参考文献/References:
[1]田永生. 大尺度受限空间核态池沸腾换热机理分析与实验研究[D]. 济南: 山东大学, 2018.
[2]陆祺, 陈德奇, 宋家斑, 等. 高温熔融金属表面爆炸沸腾过程的实验研究[J]. 核动力工程, 2016, 37(3): 158-162.
[3]何辉, 潘良明, 陈德奇. 池沸腾下朝向曲面加热面临界热通量分析模型[J]. 化工学报, 2014, 65(s1): 235-239.
[4]李忠义. 不同曲率朝下加热曲面蒸气泡的生长滑移和脱离的实验研究[D]. 大连: 大连理工大学, 2017.
[5]李维仲, 姬安生, 董波. 过冷沸腾气泡在圆形朝下壁面上特性实验研究[J]. 大连理工大学学报, 2015, 55(5): 464-468.
[6]姬安生. 过冷沸腾中汽泡在圆形朝下壁面上热动力学行为的实验研究[D]. 大连:大连理工大学, 2015.
[7]LEE W H. A pressure iteration scheme for two-phase flow modeling[R]. Los Alamos:[s.n.],1979.
[8]SANDRA C K, DE S, GERALDINE J H, et al. Modeling the evaporation of a hydrocarbon feedstock in the convection section of a steam cracker[J]. Computers and Chemical Engineering, 2009, 33(1): 122-132.
[9]WU H L, PENG X F, YE P, et al. Simulation of refrigerant flow boiling in serpentine tubes[J]. International Journal of Heat and Mass Transfer, 2006, 50(5): 1186-1195.
[10]ASGHAR A, MASOUD R, AMMAR A A. CFD modeling of flow and heat transfer in a thermosyphon[J]. International Communications in Heat and Mass Transfer, 2009, 37(3): 312-318.
[11]CHEN F, MILNES D, ANITA R, et al. Volume of fluid simulation of boiling two-phase flow in a vapor-venting microchannel[J]. Frontiers in Heat and Mass Transfer, 2010, 1(1): 1-11.
[12]YANG Z, PENG X F, YE P. Numerical and experimental investigation of two phase flow during boiling in a coiled tube[J]. International Journal of Heat and Mass Transfer, 2007, 51(5): 1003-1016.
[13]BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surfacetension[J]. Journal of Computational Physics, 1992, 100(2): 335-354.
[14]朱虹. 多孔陶瓷材料的弹性和传热性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
[15]SAMKHANIANI N. The evaluation of the diffuse interface method for phase change simulations using OpenFOAM[J]. Heat Transfer-Asian Research, 2017, 46(8): 1173-1203.
[16]SAMKHANIANI N. Numerical simulation of superheated vapor bubble rising in stagnant liquid[J]. Heat Mass Transfer, 2017, 53(9): 2885-2899.
[17]SUN D L, XU J L, WANG L. Development of vapor-liquid phase change model for volume-of-fluid method in Fluent[J]. International Communications in Heat and Mass Transfer, 2012, 39(8): 1101-1106.
[18]GUO D Z, SUN D L, LI Z Y, et al. Phase change heat transfer simulation for boiling bubbles arising from a vapor film by the voset method[J]. Numerical Heat Transfer Part A:Applications, 2011, 59(11): 857-881.
[19]SAMUEL W J, WELCH J W. A volume of fluid based method for fluid flows with phase change[J]. Journal of Computational Physics, 2000, 160(2): 662-682.
[20]王倩, 李辉平, 李保民, 等. 55CrMo钢热物性参数的测定[J]. 试验技术与方法, 2012, 48(2): 109-111.
[21] SATO Y, NICENO B. A depletable micro-layer model for nucleate pool boiling[J]. Journal of Computational Physics, 2015, 300: 20-52.
[22]沈秀中, 宫崎庆次, 徐济鋆. 在垂直环形窄缝流道中的沸腾传热特性研究[J]. 核科学与工程, 2001, 21(3): 244-251.
[23]袁德文. 窄流道内高过冷流动沸腾条件下的汽泡演化特性及机制[D]. 重庆: 重庆大学, 2010.
[24]郑强, 高璞珍, 许超, 等. 窄矩形通道内汽泡聚合行为研究[J]. 原子能科学技术, 2014, 48(6): 1105-1109.
[25]TOMOHIDE Y, OSAMU N. Microscale wall heat transfer and bubble growth in single bubblesubcooled boiling of water[J]. International Journal of Heat and Mass Transfer, 2016, 100: 851-860.
[26]李少丹, 谭思超, 许超, 等. 流动沸腾条件下窄通道内的汽泡生长和冷凝[J]. 原子能科学技术, 2014, 43(s1): 233-238.
[27]管鹏. 流动沸腾中汽泡行为的理论与实验研究[D]. 北京: 北京交通大学, 2013.
[28]罗小平, 谢鸣宇, 郭峰, 等. 不同表面能对微细通道流动沸腾压降特性的影响[J]. 农业机械学报, 2017, 48(1): 406-412.
[29]罗小平, 邓聪, 冯振飞, 等. 制冷系统不同表面能微通道的流动沸腾传热特性试验[J]. 农业工程学报, 2016, 32(20): 217-222.
[30]徐建军, 陈炳德, 王小军. 竖直矩形窄缝通道滑移汽泡聚合作用可视化实验研究[J]. 原子能科学技术, 2011, 45(5): 548-553.
[31]许川, 程宁, 彭常宏. 过冷沸腾水中单汽泡成长的数值模拟[J]. 核动力工程, 2017, 38(6): 23-26.
[32]毕景良, 柯道友, 徐建军, 等. 微尺度核态沸腾汽泡聚合特性研究[J]. 核动力工程, 2016, 37(3): 26-30.