[1]纪国剑,朱志伟,李佩萤,等.高温曲面过冷核态沸腾汽泡演化特性数值研究[J].常州大学学报(自然科学版),2021,33(01):48-56.[doi:10.3969/j.issn.2095-0411.2021.01.008]
 JI Guojian,ZHU Zhiwei,LI Peiying,et al.Simulation of Evolution Characteristics of Supercooled Nucleate Boiling Bubble on High Temperature Curved Surface[J].Journal of Changzhou University(Natural Science Edition),2021,33(01):48-56.[doi:10.3969/j.issn.2095-0411.2021.01.008]
点击复制

高温曲面过冷核态沸腾汽泡演化特性数值研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第33卷
期数:
2021年01期
页码:
48-56
栏目:
机械制造及其自动化
出版日期:
2021-01-20

文章信息/Info

Title:
Simulation of Evolution Characteristics of Supercooled Nucleate Boiling Bubble on High Temperature Curved Surface
文章编号:
2095-0411(2021)01-0048-09
作者:
纪国剑12朱志伟1李佩萤1郭晶晶1周宁1王政伟1
(1. 常州大学 石油工程学院, 江苏 常州213164; 2. 江苏省绿色过程装备重点实验室(常州大学), 江苏 常州213164)
Author(s):
JI Guojian12 ZHU Zhiwei1LI Peiying1 GUO Jingjing1 ZHOU Ning1 WANG Zhengwei1
(1. School of Petroleum Engineering, Changzhou University, Changzhou 213164, China; 2. Jiangsu Key Laboratory of Green Process Equipment,Changzhou University, Changzhou 213164, China)
关键词:
高温曲面 过冷核态沸腾 汽泡 汽液两相流 相变 传热
Keywords:
high temperature curved surface supercooled nucleate boiling bubble gas-liquid flow phase change heat transfer
分类号:
TK 124
DOI:
10.3969/j.issn.2095-0411.2021.01.008
文献标志码:
A
摘要:
基于OpenFOAM6.0软件编译了NewInterPhaseChangeFoam(NIPCF)求解器, 采用有限体积法VOF(Volume of Fluid)数值计算高温曲面发生过冷核态沸腾时水中汽泡的运动过程。结果表明:上朝向曲面核化的汽泡的演化行为与平面上相似; 侧朝向曲面核化的汽泡在上下压差的作用下呈扁椭圆形滑移, 最终以不规则梨形脱离壁面; 浮升力对下朝向曲面核化的汽泡的脱离行为起抑制作用; 孤立汽泡区的两汽泡在浮升过程中相互靠近时, 其中一个汽泡会出现短暂加速现象; 气柱汽块区汽块在浮升过程中形成的汽液混合区的演化行为与区域内单相占比有关; 若区域内汽相占比较低, 以汽相冷凝为主, 反之, 以液相蒸发为主。
Abstract:
The NewInterPhaseChangeFoam(NIPCF)solver was based on OpenFOAM6.0 software. The Volume of Fluid Method(VOF)was used to calculate the motion of bubbles in water during the supercooled nucleate boiling on high-temperature surfaces. The results show that the evolution of the bubble nucleation on the surface is similar to that on the plane. The bubble nucleation on the side toward the surface is flat and elliptical under the action of the upper and lower pressure difference, and the departure shape of the bubble is in irregular pear-shape. The buoyancy force inhibits the detachment behavior of vapor bubbles nucleated downward. When the two bubbles in the isolated bubble region approach with each other during the lifting process, one of the bubbles will briefly accelerate. For the gas column block steam, the evolution behavior of the vapor-liquid mixing zone formed during the lifting process is related to the ratio of vapor to liquid in the region. If the vapor phase in the region is relatively low, the vapor phase condensation is dominant. On the contrary, when the vapor phase is high relatively, the liquid phase evaporation is dominant.

参考文献/References:

[1]田永生. 大尺度受限空间核态池沸腾换热机理分析与实验研究[D]. 济南: 山东大学, 2018.
[2]陆祺, 陈德奇, 宋家斑, 等. 高温熔融金属表面爆炸沸腾过程的实验研究[J]. 核动力工程, 2016, 37(3): 158-162.
[3]何辉, 潘良明, 陈德奇. 池沸腾下朝向曲面加热面临界热通量分析模型[J]. 化工学报, 2014, 65(s1): 235-239.
[4]李忠义. 不同曲率朝下加热曲面蒸气泡的生长滑移和脱离的实验研究[D]. 大连: 大连理工大学, 2017.
[5]李维仲, 姬安生, 董波. 过冷沸腾气泡在圆形朝下壁面上特性实验研究[J]. 大连理工大学学报, 2015, 55(5): 464-468.
[6]姬安生. 过冷沸腾中汽泡在圆形朝下壁面上热动力学行为的实验研究[D]. 大连:大连理工大学, 2015.
[7]LEE W H. A pressure iteration scheme for two-phase flow modeling[R]. Los Alamos:[s.n.],1979.
[8]SANDRA C K, DE S, GERALDINE J H, et al. Modeling the evaporation of a hydrocarbon feedstock in the convection section of a steam cracker[J]. Computers and Chemical Engineering, 2009, 33(1): 122-132.
[9]WU H L, PENG X F, YE P, et al. Simulation of refrigerant flow boiling in serpentine tubes[J]. International Journal of Heat and Mass Transfer, 2006, 50(5): 1186-1195.
[10]ASGHAR A, MASOUD R, AMMAR A A. CFD modeling of flow and heat transfer in a thermosyphon[J]. International Communications in Heat and Mass Transfer, 2009, 37(3): 312-318.
[11]CHEN F, MILNES D, ANITA R, et al. Volume of fluid simulation of boiling two-phase flow in a vapor-venting microchannel[J]. Frontiers in Heat and Mass Transfer, 2010, 1(1): 1-11.
[12]YANG Z, PENG X F, YE P. Numerical and experimental investigation of two phase flow during boiling in a coiled tube[J]. International Journal of Heat and Mass Transfer, 2007, 51(5): 1003-1016.
[13]BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surfacetension[J]. Journal of Computational Physics, 1992, 100(2): 335-354.
[14]朱虹. 多孔陶瓷材料的弹性和传热性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
[15]SAMKHANIANI N. The evaluation of the diffuse interface method for phase change simulations using OpenFOAM[J]. Heat Transfer-Asian Research, 2017, 46(8): 1173-1203.
[16]SAMKHANIANI N. Numerical simulation of superheated vapor bubble rising in stagnant liquid[J]. Heat Mass Transfer, 2017, 53(9): 2885-2899.
[17]SUN D L, XU J L, WANG L. Development of vapor-liquid phase change model for volume-of-fluid method in Fluent[J]. International Communications in Heat and Mass Transfer, 2012, 39(8): 1101-1106.
[18]GUO D Z, SUN D L, LI Z Y, et al. Phase change heat transfer simulation for boiling bubbles arising from a vapor film by the voset method[J]. Numerical Heat Transfer Part A:Applications, 2011, 59(11): 857-881.
[19]SAMUEL W J, WELCH J W. A volume of fluid based method for fluid flows with phase change[J]. Journal of Computational Physics, 2000, 160(2): 662-682.
[20]王倩, 李辉平, 李保民, 等. 55CrMo钢热物性参数的测定[J]. 试验技术与方法, 2012, 48(2): 109-111.
[21] SATO Y, NICENO B. A depletable micro-layer model for nucleate pool boiling[J]. Journal of Computational Physics, 2015, 300: 20-52.
[22]沈秀中, 宫崎庆次, 徐济鋆. 在垂直环形窄缝流道中的沸腾传热特性研究[J]. 核科学与工程, 2001, 21(3): 244-251.
[23]袁德文. 窄流道内高过冷流动沸腾条件下的汽泡演化特性及机制[D]. 重庆: 重庆大学, 2010.
[24]郑强, 高璞珍, 许超, 等. 窄矩形通道内汽泡聚合行为研究[J]. 原子能科学技术, 2014, 48(6): 1105-1109.
[25]TOMOHIDE Y, OSAMU N. Microscale wall heat transfer and bubble growth in single bubblesubcooled boiling of water[J]. International Journal of Heat and Mass Transfer, 2016, 100: 851-860.
[26]李少丹, 谭思超, 许超, 等. 流动沸腾条件下窄通道内的汽泡生长和冷凝[J]. 原子能科学技术, 2014, 43(s1): 233-238.
[27]管鹏. 流动沸腾中汽泡行为的理论与实验研究[D]. 北京: 北京交通大学, 2013.
[28]罗小平, 谢鸣宇, 郭峰, 等. 不同表面能对微细通道流动沸腾压降特性的影响[J]. 农业机械学报, 2017, 48(1): 406-412.
[29]罗小平, 邓聪, 冯振飞, 等. 制冷系统不同表面能微通道的流动沸腾传热特性试验[J]. 农业工程学报, 2016, 32(20): 217-222.
[30]徐建军, 陈炳德, 王小军. 竖直矩形窄缝通道滑移汽泡聚合作用可视化实验研究[J]. 原子能科学技术, 2011, 45(5): 548-553.
[31]许川, 程宁, 彭常宏. 过冷沸腾水中单汽泡成长的数值模拟[J]. 核动力工程, 2017, 38(6): 23-26.
[32]毕景良, 柯道友, 徐建军, 等. 微尺度核态沸腾汽泡聚合特性研究[J]. 核动力工程, 2016, 37(3): 26-30.

备注/Memo

备注/Memo:
收稿日期:2020-09-05。
基金项目:国家重点研发计划项目(2017YFC0805101); 江苏省研究生科研与实践创新计划项目(SJCX180966)。
作者简介:纪国剑(1980—),男,江苏句容人,博士,副教授。E-mail:jgj@cczu.edu.cn
更新日期/Last Update: 2021-01-20