参考文献/References:
[1]LIU Y, WANG S, KHAN M S, et al. A novel deep hybrid recommender system based on auto-encoder with neural collaborative filtering[J]. Big Data Mining and Analytics, 2018, 1(3): 211-221.
[2]STRUB F, GAUDEL R, MARY J. Hybrid recommender system based on autoencoders[C]// Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. Boston:ACM, 2016: 11-16.
[3]LIANG D, KRISHNAN R G, HOFFMAN M D, et al. Variational autoencoders for collaborative filtering[C]. Geneva: [s.n.], 2018.
[4]黄立威, 江碧涛, 吕守业,等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7):1-30.
[5]GUO H F, TANG R M, YE Y M, et al. Deepfm: a factorization-machine based neural network for ctr prediction[C].[S.l.:s.n.], 2017.
[6]XUE H J, DAI X, ZHANG J, et al. Deep matrix factorization models for recommender systems[C]. [S.l.]: IJCAI, 2017: 3203-3209.
[7]HE X, LIAO L, ZHANG H, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web. Perth:International World Wide Web Conferences Steering Committee, 2017: 173-182.
[8]HE X, DU X, WANG X, et al. Outer product-based neural collaborative filtering[C]//Twenty-Seventh International Joint Conference on Artificial Intelligence{IJCAI-18}. [S.l.:s.n.], 2018.
[9]CHEN Y, DE RIJKE M. A collective variational autoencoder for top-n recommendation with side information[C]//. Proceedings of the 3rd Workshop on Deep Learning for Recommender Systems. [S.l.]: ACM, 2018: 3-9.
[10]ZHANG Q, CAO L, ZHU C, et al. CoupledCF: learning explicit and implicit user-item couplings in recommendation for deep collaborative filtering[C]. [S.l.]: IJCAI, 2018: 3662-3668.
[11]CHENG W, SHEN Y, ZHU Y, et al. DELF: A dual-embedding based deep latent factor model for recommendation[C]. [S.l.]: IJCAI, 2018: 3329-3335.
[12]XIAO T, LIANG S, SHEN H, et al. Neural variational hybrid collaborative filtering[M]. [S.l.:s.n.], 2018.
[13]RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: bayesian personalized ranking from implicit feedback[C]// Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence. [S.l.]: AUAI Press, 2009: 452-461.
[14]SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]// Proceedings of the 10th international conference on World Wide Web. [S.l.]: ACM, 2001: 285-295.
[15]HU Y, KOREN Y, VOLINSKY C. Collaborative filtering for implicit feedback datasets[C]// Data Mining, 2008. ICDM'08. Eighth IEEE International Conference on. [S.l.]:IEEE, 2008: 263-272.