[1]吴长军,熊 伟,周 琛,等.退火温度对共晶和单相Al-Co-Cr-Fe-Ni高熵合金显微组织及硬度的影响[J].常州大学学报(自然科学版),2021,33(03):1-8.[doi:10.3969/j.issn.2095-0411.2021.03.001]
 WU Changjun,XIONG Wei,ZHOU Chen,et al.Effect of Annealing Temperature on Microstructure and Hardness of the Al-Co-Cr-Fe-Ni High Entropy Alloys with Eutectic Structure and Single Phase[J].Journal of Changzhou University(Natural Science Edition),2021,33(03):1-8.[doi:10.3969/j.issn.2095-0411.2021.03.001]
点击复制

退火温度对共晶和单相Al-Co-Cr-Fe-Ni高熵合金显微组织及硬度的影响()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第33卷
期数:
2021年03期
页码:
1-8
栏目:
材料科学与工程
出版日期:
2021-05-28

文章信息/Info

Title:
Effect of Annealing Temperature on Microstructure and Hardness of the Al-Co-Cr-Fe-Ni High Entropy Alloys with Eutectic Structure and Single Phase
文章编号:
2095-0411(2021)03-0001-08
作者:
吴长军 熊 伟 周 琛 刘 亚 苏旭平
(江苏省材料表面科学与技术重点实验室(常州大学), 江苏 常州213164; 常州大学 材料科学与工程学院, 江苏 常州 213164)
Author(s):
WU Changjun XIONG Wei ZHOU Chen LIU Ya SU Xuping
(Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164, China; School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China)
关键词:
Al-Co-Cr-Fe-Ni 高熵合金 退火处理 共晶 显微组织
Keywords:
Al-Co-Cr-Fe-Ni high-entropy alloy annealing treatment eutectic microstructure
分类号:
TG 113.12
DOI:
10.3969/j.issn.2095-0411.2021.03.001
文献标志码:
A
摘要:
采用电弧熔炼法制备了4个铸态为FCC+B2共晶组织和B2单相的Al-Co-Cr-Fe-Ni高熵合金, 分析了其相变点, 并研究了600, 800, 1 000 ℃下真空退火10 d对这些合金显微组织及硬度的影响。研究表明: AlCoCrFeNi2.1和Al0.75Co1.25CrFeNi合金的共晶反应温度分别为1 344 ℃和1 359 ℃。600~1 000 ℃退火10 d对AlCoCrFeNi2.1高熵合金的显微组织无明显影响; 而随着退火温度的增加, Al0.75Co1.25CrFeNi合金中共晶组织的两相层片间距增加。随着Al含量的增加, AlxCo2-xCrFeNi合金的B2相稳定性增加, 合金的固相线温度明显升高, 显微硬度也明显增加。铸态为B2单相的AlCoCrFeNi合金加热到605.7 ℃以上会转变为组织细小的FCC+B2+σ三相; 继续加热到906.8 ℃以上, σ相消失, FCC相呈大块状分布。而Al1.75Co0.25CrFeNi合金需要加热到982.4 ℃以上才会分解为两种不同成分的B2相。实验发现: 退火温度越高, 合金的显微硬度越低, 这些合金在800 ℃以下都具有较高的硬度。
Abstract:
Four Al-Co-Cr-Fe-Ni high entropy alloys, which have FCC+B2 eutectic structure or B2 single phase in as-cast state, were melted by arc melting. The phase transformation point was firstly examined. The effect of annealing temperature at 600 ℃, 800 ℃ and 1000 ℃ for 10 days on microstructure and hardness of these alloys were studied.The experimental results showed that the FCC+B2 eutectic reaction temperatures for the AlCoCrFeNi2.1 and Al0.75Co1.25CrFeNi alloys are 1 344 ℃ and 1 359 ℃, respectively. Annealing at 600-1 000 ℃ for 10 days had no obvious effect on the microstructure of AlCoCrFeNi2.1 high entropy alloy, but with the increase of annealing temperature, the lamellar spacing between FCC and B2 phases in eutectic structure of Al0.75Co1.25CrFeNi alloy increased. With the increase of Al content, the phase stability of B2 phase in the AlxCo2-xCrFeNi alloys increased, and the solidus temperature and microhardness of these alloy increased obviously. When the as-cast AlCoCrFeNi alloy was heated above 605.7 ℃, it would turn into FCC + B2 + σ three-phase, but the microstructure was very fine. When heated up to above 906.8 ℃, the σ phase disappeared, and FCC phase was massive. However, Al1.75Co0.25CrFeNi alloy needed to be heated above 982.4 ℃ to decompose into two different B2 phases. It was found that the higher the annealing temperature, the lower the microhardness of the alloy. All these alloys have high hardness below 800 ℃.

参考文献/References:

[1]MIRACLE D B, SENKOV O N. A critical review of high entropy alloys(HEAs)and related concepts[J]. Acta Materialia, 2017, 122: 448-511.
[2]ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61: 1-93.
[3]王重, 林万明, 马胜国, 等. 冷轧对Al10Cu25Co20Fe20Ni25高熵合金组织结构及力学性能的影响[J]. 材料工程, 2015, 43(8): 50-55.
[4]LU Z P, WANG H, CHEN M W, et al. An assessment on the future development of high-entropy alloys: summary from a recent workshop[J]. Intermetallics, 2015, 66: 67-76.
[5]LAPLANCHE G, GADAUD P, HORST O, et al. Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy[J]. Journal of Alloys and Compounds, 2015, 623: 348-353.
[6]周航, 杨少锋, 杨亚楠, 等. 高熵合金的研究进展及发展趋势[J]. 热加工工艺, 2018, 47(18): 5-9.
[7]QIAO J W, MA S G, HUANG E W, et al. Microstructural characteristics and mechanical behaviors of AlCoCrFeNi high-entropy alloys at ambient and cryogenic temperatures[J]. Materials Science Forum, 2011, 688: 419-425.
[8]PARK N, WATANABE I, TERADA D, et al. Recrystallization behavior of CoCrCuFeNi high-entropy alloy[J]. Metallurgical and Materials Transactions A, 2015,46(4): 1481-1487.
[9]孙娅, 吴长军, 刘亚, 等. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[10]LU Y P, GAO X Z, JIANG L, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range[J]. Acta Materialia, 2017, 124: 143-150.
[11]GAO X Z, LU Y P, ZHANG B, et al. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Acta Materialia, 2017, 141: 59-66.
[12]SHI P J, REN W L, ZHENG T X, et al. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae[J]. Nature Communications, 2019, 10(1): 489.
[13]ZHANG Y L, WANG X G, LI J G, et al. Deformation mechanism during high-temperature tensile test in an eutectic high-entropy alloy AlCoCrFeNi2.1[J]. Materials Science and Engineering: A, 2018, 724: 148-155.
[14]REDDY S R, SUNKARI U, LOZINKO A, et al. Microstructure and texture of a severely warm-rolled and annealed AlCoCrFeNi2.1 eutectic high entropy alloy[J]. Journal of Physics: Conference Series, 2019, 1270:12054.
[15]ZHENG H J, CHEN R R, QIN G, et al. Phase separation of AlCoCrFeNi2.1 eutectic high-entropy alloy during directional solidification and their effect on tensile properties[J]. Intermetallics, 2019, 113: 106569.
[16]NIU S Z, KOU H C, GUO T, et al. Strengthening of nanoprecipitations in an annealed Al0.5CoCrFeNi high entropy alloy[J]. Materials Science & Engineering: A, 2016, 671: 82-86.
[17]吴兴财, 张伟强, 秦力, 等. 退火处理对AlCoCrFeNi高熵合金组织结构及性能的影响[J]. 热加工工艺, 2015, 44(8): 220-222, 226.
[18]MUNITZ A, SALHOV S, HAYUN S, et al. Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy[J]. Journal of Alloys and Compounds, 2016, 683: 221-230.
[19]SUN Y, WU C J, PENG H P, et al. Phase constituent and microhardness of as-cast and long-time annealed AlxCo2-xCrFeNi multicomponent alloys[J]. Journal of Phase Equilibria and Diffusion, 2019, 40(5): 706-714.
[20]LU Y P, DONG Y, GUO S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys[J]. Scientific Reports, 2014, 4(1): 6200.
[21]BHATTACHARJEE T, ZHENG R X, CHONG Y, et al. Effect of low temperature on tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy[J]. Materials Chemistry and Physics, 2018, 210: 207-212.
[22]WANI I S, BHATTACHARJEE T, SHEIKH S, et al. Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1eutectic high entropy alloy using thermo-mechanical processing[J]. Materials Science and Engineering: A, 2016, 675: 99-109.
[23]KAFEXHIU F, PODGORNIK B, FEIZPOUR D. Tribological behavior of as-cast and aged AlCoCrFeNi2.1 CCA[J]. Metals, 2020, 10(2): 208.
[24]ASOUSHE M H, HANZAKI A Z, ABEDI H R, et al. Thermal stability, microstructure and texture evolution of thermomechanical processed AlCoCrFeNi2.1 eutectic high entropy alloy[J]. Materials Science and Engineering: A,2021, 799: 140012.
[25]ZHAO C, LI J, LIU Y, et al. Tailoring mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via phase transformation[J]. Journal of Materials Science & Technology, 2021, 73: 83-90.
[26]WANG R, ZHANG K, DAVIES C, et al. Evolution of microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy prepared by direct laser fabrication[J]. Journal of Alloys and Compounds, 2017, 694: 971-981.
[27]PANDA J P, ARYA P, GURUVIDYATHRI K, et al. Studies on kinetics of BCC to: A, FCC phase transformation in AlCoCrFeNi equiatomic high entropy alloy[J]. Metallurgical and Materials Transactions: A, 2021, 52(5): 1679-1688.

相似文献/References:

[1]何小波,丁露,银凤翔,等.高熵合金在电催化氧还原反应中的应用及发展[J].常州大学学报(自然科学版),2024,36(01):27.[doi:10.3969/j.issn.2095-0411.2024.01.004]
 HE Xiaobo,DING Lu,YIN Fengxiang,et al.Applications and developments of high-entropy alloys toward electrocatalytic oxygen reduction reaction[J].Journal of Changzhou University(Natural Science Edition),2024,36(03):27.[doi:10.3969/j.issn.2095-0411.2024.01.004]

备注/Memo

备注/Memo:
收稿日期:2020-12-30。
基金项目:国家自然科学基金资助项目(51771035); 江苏省自然科学基金资助项目(BK20161190)。
作者简介:吴长军(1985-), 男, 苗族, 湖南凤凰人, 博士, 副教授。E-mail: wucj@cczu.edu.cn
更新日期/Last Update: 1900-01-01