[1]王 营,邢书明.铝合金液态模锻流变充型能力预报模型[J].常州大学学报(自然科学版),2021,33(05):15-24.[doi:10.3969/j.issn.2095-0411.2021.05.003]
 WANG Ying,XING Shuming.Prediction Model of Rheological Filling Ability for Aluminum Alloy in Molten Metal Die Forging[J].Journal of Changzhou University(Natural Science Edition),2021,33(05):15-24.[doi:10.3969/j.issn.2095-0411.2021.05.003]
点击复制

铝合金液态模锻流变充型能力预报模型()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第33卷
期数:
2021年05期
页码:
15-24
栏目:
特约稿
出版日期:
2021-09-28

文章信息/Info

Title:
Prediction Model of Rheological Filling Ability for Aluminum Alloy in Molten Metal Die Forging
文章编号:
2095-0411(2021)05-0015-10
作者:
王 营1 邢书明2
(1. 郑州工程技术学院 机电与车辆工程学院, 河南 郑州 450044; 2. 北京交通大学 机械与电子控制工程学院, 北京 100044)
Author(s):
WANG Ying1 XING Shuming2
(1. School of Mechatronics and Vehicle Engineering, Zhengzhou University of Technology, Zhengzhou 450044, China; 2. School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China)
关键词:
液态模锻 充型能力 停止流变机理 数学模型
Keywords:
molten metal die forging filling ability stopping rheological mechanism mathematical model
分类号:
TG 3
DOI:
10.3969/j.issn.2095-0411.2021.05.003
文献标志码:
A
摘要:
基于一维流动换热原理, 通过谐波法求解一维耦合热传导——热对流方程, 得到温度的沿程衰减规律, 进而求出流变阻力的沿程增大规律; 同时求解压力的沿程衰减规律, 结合合金熔体停止流变机理和条件, 建立铝合金液态模锻流变充型能力预报模型。该模型包含液态模锻工艺参数、 材料性能参数及模具结构参数, 适用于液相线温度以下的广义半固态合金熔体。采用6066铝合金通过间接液态模锻的阿基米德螺旋线试样长度验证模型的有效性, 结果表明: 理论结果与实验结果的最大相对偏差为8.2%。与现有的充型能力模型相比, 本文的流变充型距离模型在预报精度及适用范围方面有一定的进步性。
Abstract:
Based on the principle of one dimensional flow and heat transfer, the law of temperature attenuation along the path was acquired by solving the one-dimensional coupled heat conduction and convection equation with harmonic method. Then the law of rheological resistance increasing along the path was obtained. Meanwhile, the law of pressure attenuation along the path was solved. Finally, the prediction model of rheological filling ability for aluminum alloy in molten metal die forging was established by combining the stopping rheological mechanism and conditions of alloy melt. Furthermore, the model covered the process parameters of molten metal die forging, material property parameters and mold structure parameters, and it was suitable for generalized semi-solid alloy melt below liquidus temperature. The validity of theoretical model was verified by the length of Archimedes spiral sample of 6066 aluminum alloy by molten metal die forging. The results showed that the maximum relative deviation between the calculated results and the experimental results was only 8.2%. Compared with the existing filling ability model, the rheological filling distance model in this paper has some progress in the prediction accuracy and application scope.

参考文献/References:

[1]ZHANG T J, GUO J J, SU Y Q, et al. Eeffect of traveling magnetic field on mould-filling length of the A357 melt during casting thin walled plate[J]. Jounral of Materials Science and Technology, 2003, 19(1): 43-46.
[2]KULASEGARAM S, BONET J, LEWISR W, et al. High pressure die casting simulation using a Lagrangian particle method[J]. Communications in Numerical Methods in Engineering, 2003, 19(9): 679-687.
[3]FLEMINGS M C, YUKRO J, MARTINEZ R. Semi-solid forming: our understanding today and its implications for improved processes[C]//Solidification Processes and Microstructures:A Symposium in Honor of Wilfried Kurz. Charlottes NC: Massachusetts Institute of Technology, Department of Materian and Engineering, 2004: 3-14.
[4]XING S M, ZHANG L Z, ZENG D B, et al. Mold-filling ability of semisolid alloy[J]. International Journal of Minerals Metallurgy and Materials, 2002, 9(4): 253-257.
[5]邢书明, 谭建波, 张海英, 等. 半固态合金流变成型工艺理论—第1部分 流变充型理论[J]. 特种铸造及有色合金, 2006, 26(3): 161-165, 127.
[6]DAS P, SAMANTA S K, DUTTA P. Rheological behavior of Al-7Si-0.3Mg alloy at mushy state[J]. Metallurgical and Materials Transactions B, 2015, 46(3): 1302-1313.
[7]ZHANG H Y, XING S M, ZHANG Q H, et al. Evaluation of the mold-filling ability of alloy melt in squeeze casting[J]. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 2006, 13(1): 60-66.
[8]谭建波, 邢书明, 李立新, 等. 半固态A356合金流变充型的极限长度[J]. 中国有色金属学报, 2006, 16(6): 970-975.
[9]WANG H, ZHANG Y M, ZHOU B C, et al. Mold-filling ability of aluminum alloy melt during the two-step foaming process[J]. Journal of Materials Science & Technology, 2016, 32(6): 509-514.
[10]OURIEV B. Influence of shear and orthogonal vibration on semisolid aluminum flow properties[J]. Rheologica Acta, 2007, 46(6): 785-792.
[11]MA Z, ZHANG H R, SONG W, et al. Pressure-driven mold filling model of aluminum alloy melt/semi-solid slurry based on rheological behavior[J]. Journal of Materials Science & Technology, 2020, 39: 14-21.
[12]杨世铭. 传热学基础[M]. 2版. 北京: 高等教育出版社, 2003.
[13]ILKHCHY A F, JABBARI M, DAVAMI P. Effect of pressure on heat transfer coefficient at the metal/mold interface of A356 aluminum alloy[J]. International Communications in Heat and Mass Transfer, 2012, 39(5): 705-712.
[14]王春生, 田丽, 李光锡, 等. 合金充型能力的理论分析[J]. 铸造, 1994, 43(6): 1-6.
[15]AN Z Q, ZHANG Y L, LI Q, et al. Effect of particle shapeon the apparent viscosity of liquid-solid suspensions[J]. Powder Technology, 2018, 328: 199-206.
[16]LIN C W, HUNG F Y, LUI T S. Microstructure evolution and microstructural characteristics of Al-Mg-Si aluminum alloys fabricated by a modified strain-induced melting activation process[J]. Metals, 2017, 8(1): 3.
[17]胡汉起. 金属凝固原理[M]. 2版. 北京: 机械工业出版社, 2000.
[18]SUN Z Z, HU H, NIU X P. Determination of heat transfer coefficients by extrapolation and numerical inverse methods in squeeze casting of magnesium alloy AM60[J]. Journal of Materials Processing Technology, 2011, 211(8): 1432-1440.
[19]LIU Z Y, MAO W M, WANG W P, et al. Investigation of rheo-diecasting mold filling of semi-solid A380 aluminum alloy slurry[J]. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(6): 691-700.

相似文献/References:

[1]邢书明,邢若兰.液态模锻(挤压铸造)技术研究与应用进展[J].常州大学学报(自然科学版),2021,33(05):1.[doi:10.3969/j.issn.2095-0411.2021.05.001]
 XING Shuming,XING Ruolan.Research and Application Progress of Molten Metal Die Forging(Squeeze Casting)Technology[J].Journal of Changzhou University(Natural Science Edition),2021,33(05):1.[doi:10.3969/j.issn.2095-0411.2021.05.001]
[2]武彤,邢书明,刘鑫.液态模锻2A50铝合金轮毂宏观缺陷?微观组织和力学性能研究[J].常州大学学报(自然科学版),2021,33(06):8.[doi:10.3969/j.issn.2095-0411.2021.06.002]
 WU Tong,XING Shuming,LIU Xin.Study on Macroscopic Defects, Microstructure and Mechanical Properties of 2A50 Aluminum Alloy Wheel Hub by Molten Metals Die Forging[J].Journal of Changzhou University(Natural Science Edition),2021,33(05):8.[doi:10.3969/j.issn.2095-0411.2021.06.002]
[3]邢书明,武彤,孙鸿基,等.变形铝合金液态模锻及其研究进展[J].常州大学学报(自然科学版),2022,34(06):1.[doi:10.3969/j.issn.2095-0411.2022.06.001]
 XING Shuming,WU Tong,SUN Hongji,et al.Wrought Aluminum Alloy for Molten Metal Die Forging(MMDF)and Its Progress[J].Journal of Changzhou University(Natural Science Edition),2022,34(05):1.[doi:10.3969/j.issn.2095-0411.2022.06.001]
[4]单爱丽,邢书明,宋文明,等.液态模锻高铬铸铁亚温淬火工艺研究[J].常州大学学报(自然科学版),2023,35(01):1.[doi:10.3969/j.issn.2095-0411.2023.01.001]
 SHAN Aili,XING Shuming,SONG Wenming,et al.Study on intercritical quenching process of high chromium cast iron by melted metal die forging[J].Journal of Changzhou University(Natural Science Edition),2023,35(05):1.[doi:10.3969/j.issn.2095-0411.2023.01.001]
[5]江小龙,邢书明,甘玉秀,等.液锻压力对亚共晶Al-Si合金吊架的组织与性能影响[J].常州大学学报(自然科学版),2023,35(01):10.[doi:10.3969/j.issn.2095-0411.2023.01.002]
 JIANG Xiaolong,XING Shuming,GAN Yuxiu,et al.Effect of liquid forging pressure on microstructure and properties of hypoeutectic Al-Si alloy hanger[J].Journal of Changzhou University(Natural Science Edition),2023,35(05):10.[doi:10.3969/j.issn.2095-0411.2023.01.002]

备注/Memo

备注/Memo:
收稿日期:2021-06-29。作者简介:王营(1987—), 女, 河南南阳人, 博士, 讲师。 通信联系人: 邢书明(1962—), E-mail: smxing@bjtu.edu.cn
更新日期/Last Update: 1900-01-01