[1]潘旭鸣,丁淼,徐萱,等.稻田氮磷流失方式及时间分布研究[J].常州大学学报(自然科学版),2022,34(04):35-42.[doi:10.3969/j.issn.2095-0411.2022.04.005]
 PAN Xuming,DING Miao,XU Xuan,et al.Study on the Ways and Times Distribution of Nitrogen and Phosphorus Losses from Paddy Field[J].Journal of Changzhou University(Natural Science Edition),2022,34(04):35-42.[doi:10.3969/j.issn.2095-0411.2022.04.005]
点击复制

稻田氮磷流失方式及时间分布研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第34卷
期数:
2022年04期
页码:
35-42
栏目:
环境科学与工程
出版日期:
2022-07-28

文章信息/Info

Title:
Study on the Ways and Times Distribution of Nitrogen and Phosphorus Losses from Paddy Field
文章编号:
2095-0411(2022)04-0035-08
作者:
潘旭鸣1丁淼1徐萱2刘远康1刘建国1
(1.常州大学环境与安全工程学院,江苏常州213164;2.常州市农业农村局,江苏常州213000)
Author(s):
PAN Xuming1 DING Miao1 XU Xuan2 LIU Yuankang1 LIU Jianguo1
(1.School of Environmental & Safety Engineering, Changzhou University, Changzhou 213164, China; 2.Changzhou Bureau of Agriculture and Rural Affairs, Changzhou 213000, China)
关键词:
水稻 流失 地表径流
Keywords:
rice nitrogen phosphorus loss surface runoff
分类号:
X 52
DOI:
10.3969/j.issn.2095-0411.2022.04.005
文献标志码:
A
摘要:
农田氮、磷流失是造成水体富营养化的主要污染源。为测算水稻生产过程中氮、磷随地表径流的流失量并探索流失规律,在常州市水稻主产区设立稻田定位监测点,对稻田的水分输入、输出量及氮、磷含量进行了监测。结果表明,稻田通过降雨和灌溉水输入的氮、磷分别为2.663 8,0.154 3 g/m2,通过径流水、排水和径流水泥沙流失的氮、磷分别为4.732 5,0.342 5 g/m2。氮、磷流失量扣除输入量,试验期间稻田氮、磷表观净排放量分别为2.068 7,0.188 2 g/m2。在氮、磷流失方式的分布方面,以排水方式流失的氮占总流失量的80%以上、流失的磷占总流失量的70%以上。在氮、磷流失时间的分布方面,7月流失的氮、磷占总流失量的60%左右,6月流失的氮、磷占比也达20%以上。该结果说明,要降低稻田的氮、磷流失量,最有效的方法是减少排水量,特别是在7月。
Abstract:
Losses of nitrogen and phosphorus from farmland are the main sources of eutrophication pollutants. In order to calculate the quantities of nitrogen and phosphorus losses via surface runoff during a rice production cycle and investigate the rules, a paddy field in-situ monitoring site was established in the main rice production area of Changzhou, China. The import and loss of water, nitrogen and phosphorus in the paddy field had been monitored. The results showed that the imports of nitrogen and phosphorus via rainfall and irrigation were 2.663 8 g/m2 and 0.154 3 g/m2 respectively in the paddy field during the experimental period. The losses of nitrogen and phosphorus via runoff water, drainage water and runoff sediment were 4.732 5 g/m2 and 0.342 5 g/m2 respectively. So the net exports of nitrogen and phosphorus from the paddy field(deduction of nitrogen and phosphorus imports from the losses)were 2.068 7 g/m2 and 0.188 2 g/m2 respectively. With regard to the ways of nitrogen and phosphorus losses, the quantities of nitrogen and phosphorus losses via drainage water accounted for more than 80% and 70% of total nitrogen and phosphorus losses respectively. On the time of nitrogen and phosphorus losses, the quantities of nitrogen and phosphorus losses in July accounted for about 60% of total nitrogen and phosphorus losses. The losses of nitrogen and phosphorus in June accounted for more than 20% of total nitrogen and phosphorus losses. The results indicate that reducing drainage water of paddy field is the most effective measure to cut down the losses of nitrogen and phosphorus from paddy field, especially in July.

参考文献/References:

[1] 孔凡斌, 郭巧苓, 潘丹. 中国粮食作物的过量施肥程度评价及时空分异[J]. 经济地理, 2018, 38(10): 201-210, 240.
[2] WANG H L, HE P, SHEN C Y, et al. Effect of irrigation amount and fertilization on agriculture non-point source pollution in the paddy field[J]. Environmental Science and Pollution Research International, 2019, 26(10): 10363-10373.
[3] 闫鹏, 武雪萍, 华珞, 等. 不同水氮用量对日光温室黄瓜季土壤硝态氮淋失的影响[J]. 植物营养与肥料学报, 2012, 18(3): 645-653.
[4] 王吉苹, 朱木兰, 李青松. 农田土壤氮素渗漏淋失研究进展[J]. 四川环境, 2014, 33(6): 118-125.
[5] ZHANG D, WANG H Y, PAN J T, et al. Nitrogen application rates need to be reduced for half of the rice paddy fields in China[J]. Agriculture, Ecosystems & Environment, 2018, 265: 8-14.
[6] 刘操, 马宁, 龚明波. 模拟降雨条件下北运河流域农田养分流失特征[J]. 农业资源与环境学报, 2016, 33(3): 238-243.
[7] 张福锁, 王激清, 张卫峰, 等. 中国主要粮食作物肥料利用率现状与提高途径[J]. 土壤学报, 2008, 45(5): 915-924.
[8] KOPÁEK J, HEJZLAR J, POSCH M. Factors controlling the export of nitrogen from agricultural land in a large central European catchment during 1900—2010[J]. Environmental Science & Technology, 2013, 47(12): 6400-6407.
[9] 张维理, 武淑霞, 冀宏杰, 等. 中国农业面源污染形势估计及控制对策 I.21世纪初期中国农业面源污染的形势估计[J]. 中国农业科学, 2004, 37(7): 1008-1017.
[10] 杨林章, 施卫明, 薛利红, 等. 农村面源污染治理的“4R”理论与工程实践: 总体思路与“4R”治理技术[J]. 农业环境科学学报, 2013, 32(1): 1-8.
[11] 闵炬, 孙海军, 陈贵, 等. 太湖地区集约化农田氮素减排增效技术实践[J]. 农业环境科学学报, 2018, 37(11): 2418-2426.
[12] ZHAO X, ZHOU Y, MIN J, et al. Nitrogen runoff dominates water nitrogen pollution from rice-wheat rotation in the Taihu Lake region of China[J]. Agriculture, Ecosystems & Environment, 2012, 156: 1-11.
[13] LIU J, ZUO Q, ZHAI L M, et al. Phosphorus losses via surface runoff in rice-wheat cropping systems as impacted by rainfall regimes and fertilizer applications[J]. Journal of Integrative Agriculture, 2016, 15(3): 667-677.
[14] 黄智华, 薛滨, 逄勇. 太湖水环境演变与流域经济发展关系及趋势[J]. 长江流域资源与环境, 2006, 15(5): 627-631.
[15] 徐恒省, 洪维民, 王亚超, 等. 太湖饮用水源地蓝藻水华预警监测体系的构建[J]. 环境监测管理与技术, 2008, 20(1): 1-3, 50.
[16] WERNER F, DE LA HAYE T R, SPIELVOGEL S, et al. Small-scale spatial distribution of phosphorus fractions in soils from silicate parent material with different degree of podzolization[J]. Geoderma, 2017, 302: 52-65.
[17] 申荣艳, 樊思慰, 王永娃, 等. 玉米秸秆处理餐饮废水厌氧发酵初步研究[J]. 常州大学学报(自然科学版), 2020, 32(5): 58-66.
[18] 刘方谊, 夏颖, 黄敏, 等. 湖北省三峡库区不同种植模式下农田地表径流氮磷流失特征[J]. 农业资源与环境学报, 2018, 35(6): 550-558.
[19] 缪杰杰, 刘运峰, 胡宏祥, 等. 不同施肥模式对稻田氮磷流失及产量的影响[J]. 水土保持学报, 2020, 34(5): 86-93.
[20] 杨坤宇, 王美慧, 王毅, 等. 不同农艺管理措施下双季稻田氮磷径流流失特征及其主控因子研究[J]. 农业环境科学学报, 2019, 38(8): 1723-1734.
(责任编辑:谭晓荷)

备注/Memo

备注/Memo:
收稿日期: 2022-02-08。
基金项目: 国家自然科学基金资助项目(31071350); 江苏省研究生科研与实践创新计划资助项目(SJCX21_1267,SJCX21_1195)。
作者简介: 潘旭鸣(1997—), 男, 江苏常州人, 硕士生。通信联系人: 刘建国(1963—), E-mail: liujianguo@cczu.edu.cn
更新日期/Last Update: 1900-01-01