[1]袁惠新,莫倪旭,付双成,等.旋流泡罩流体力学性能研究[J].常州大学学报(自然科学版),2022,34(05):57-64.[doi:10.3969/j.issn.2095-0411.2022.05.008]
 YUAN Huixin,MO Nixu,FU Shuangcheng,et al.Study on the Hydrodynamic Performance of Swirl Bubble-Cap[J].Journal of Changzhou University(Natural Science Edition),2022,34(05):57-64.[doi:10.3969/j.issn.2095-0411.2022.05.008]
点击复制

旋流泡罩流体力学性能研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第34卷
期数:
2022年05期
页码:
57-64
栏目:
机械制造及其自动化
出版日期:
2022-09-28

文章信息/Info

Title:
Study on the Hydrodynamic Performance of Swirl Bubble-Cap
文章编号:
2095-0411(2022)05-0057-08
作者:
袁惠新莫倪旭付双成周发戚王伟鹏
(常州大学机械与轨道交通学院,江苏常州213164;江苏省绿色过程装备重点实验室(常州大学),江苏常州213164)
Author(s):
YUAN Huixin MO Nixu FU Shuangcheng ZHOU Faqi WANG Weipeng
(School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China; Jiangsu Key Laboratory of Green Process Equipment, Changzhou University, Changzhou 213164, China)
关键词:
旋流泡罩 流体力学性能 压降 聚结效果
Keywords:
swirl bubble-cap hydrodynamic performance pressure drop coalescence effect
分类号:
TQ 028
DOI:
10.3969/j.issn.2095-0411.2022.05.008
文献标志码:
A
摘要:
传统塔设备存在雾沫夹带甚至液泛,为此提出了旋流泡罩,其基于旋流聚结和离心沉降原理减小雾沫夹带。利用CFD数值模拟探究旋流泡罩的流体力学性能,包括压力降和相分离性能。采用出、入口平均粒度之比的聚结效果来评估相分离性能。首先用压力降试验数据来验证模拟的可靠性,用RNG k-ε模型来处理湍流,用双欧拉模型来处理气液两相流,并用PBM模型考虑液滴的聚结破碎,来探究旋流泡罩进气量对压力降的影响,进气量、进气中液滴体积分数和粒度对聚结效果的影响。结果显示,随进气量的增加,旋流泡罩压力降增加; 在研究范围内,聚结效果随进气量的增大而增加,而后趋于平缓; 聚结效果随进气中液滴体积分数的增加而提高,随进气中液滴粒度的减小而提高。
Abstract:
The mist entrainment even flooding would unavoidably occur in traditional towers. Therefore, swirl bubble-cap is proposed, which would be expected to reduce the mist entrainment based on the principle of swirl coalescence and centrifugal sedimentation. In this paper, CFD numerical simulation is used to explore the hydrodynamic performance of swirl bubble-cap, including pressure drop and phase separation performance. The coalescence effect of the ratio of the average particle size at the outlet to the inlet is used to evaluate the phase separation performance. Firstly, the reliability of the simulation was verified with the pressure drop data tested. The RNG k-ε model was used to deal with turbulence, the Euler-Euler model to deal with gas-liquid two-phase flow, the PBM model to consider the coalescence and breakage of droplets. Results showed that the pressure drop increased with the increase in feed flowrate, the coalescence effect increased with the increase in feed flowrate and then leveled off with further increase in feed flowrate, increased with the increase in droplet concentration and decreased with the increase in droplet size.

参考文献/References:

[1] 路秀林, 王者相. 塔设备[M]. 北京: 化学工业出版社, 2004.
[2] 兰州石油机械研究所. 现代塔器技术[M]. 2版. 北京: 中国石化出版社, 2005.
[3] HOFFMANN A C, STEIN L E, BRADSHAW P. Gas cyclones and swirl tubes: principles, design and operation[J]. Applied Mechanics Reviews, 2003, 56(2): B28-B29.
[4] SWANBORN R A. Method and device for treating of a gas/liquid admixture: US6176900[P]. 2001-01-23.
[5] CUYPERS C T C, STANBRIDGE D I. Device for treating a gas/liquid mixture: US7163626[P]. 2007-01-16.
[6] WILKINSON P, VOS E, KONIJN G, et al. Distillation trays that operate beyond the limits of gravity by using centrifugal separation[J]. Chemical Engineering Research and Design, 2007, 85(1): 130-135.
[7] 付有成, 王崇智. 板式塔精馏技术进展[J]. 石化技术与应用, 2000, 18(4): 231-236.
[8] WEILANDRH, GRIESELCA. Increasing the capacity of glycol contactors[C]. New Orleans: AIChE, 2004.
[9] 李春利, 王志英, 李柏春, 等. 塔板技术最新进展和研究展望[J]. 河北工业大学学报, 2002, 31(1): 20-25.
[10] 江山. 双层旋流式高速塔水力学性能研究[D]. 大连: 大连理工大学, 2015.
[11] 孙金. 高速塔切向旋流接触分离元件的优化与水力学特性分析[D]. 大连: 大连理工大学, 2017.
[12] 浙江大学化工原理组. 旋流板除雾器: 关于湍球塔除雾问题的研究[J]. 化学工程, 1972(S2): 79-84, 78.
[13] 浙江大学化工原理教研组. 旋流板技术及其应用[J]. 化学工程, 1978, 6(2): 21-34.
[14] 陈建孟, 谭天恩. 旋流板上流场的LDA实验研究[J]. 化学工程, 1996, 24(3): 59-64.
[15] 陈建孟, 谭天恩, 史小农. 旋流塔板上局部处的液滴粒径分布[J]. 高校化学工程学报, 1995, 9(4): 319-325.
[16] 扈海莉, 蒋洪. 旋流管塔盘在三甘醇吸收塔中的应用[J]. 天然气与石油, 2013, 31(4): 37-40, 8.
[17] YANG Q, MOSCA G, ROZA M. Characteristics of trays using inertial separation technology[J]. Chinese Journal of Chemical Engineering, 2010, 18(6): 954-961.
[18] 张敏, 袁惠新. 旋流聚结的机理及应用[J]. 流体机械, 2003, 31(5): 29-32.
[19] 俞强强, 施红辉, 董若凌, 等. 竖直上升圆管内气液两相流流型特性的数值模拟[J]. 浙江理工大学学报(自然科学版), 2022, 47(3): 397-404.
[20] 张华海, 王铁峰. CFD-PBM耦合模型模拟气液鼓泡床的通用性研究[J]. 化工学报, 2019, 70(2): 487-495.
[21] 侯懿宁, 何宏舟, 张军. 气动乳化脱硫筒内气液两相流动的数值模拟[J]. 环境工程学报, 2021, 15(1): 262-270.
[22] 解婷婷, 高涛, 杨松泉, 等. 旋流雾化塔盘水力学性能[J]. 化学工程, 2018, 46(10): 40-44, 62.
[23] YANG J H, LEE C Y. Experimental study on phenomena of single water droplet impacts on liquid surfaces: pattern maps and correlations[J]. Experimental Thermal and Fluid Science, 2022, 130: 110480.
[24] 常凯, 饶永超, 王树立, 等. 内置短螺旋扭带管内螺旋涡流数值模拟研究[J]. 常州大学学报(自然科学版), 2016, 28(2): 73-78.
[25] 翟银平, 王树立. 90°弯管管道螺旋流的数值模拟[J]. 常州大学学报(自然科学版), 2011, 23(2): 36-39.
(责任编辑:谭晓荷)

备注/Memo

备注/Memo:
收稿日期: 2022-04-15。
基金项目: 国家自然科学基金资助项目(21676031); 江苏省高校自然科学研究资助项目(19KJB530003)。
作者简介: 袁惠新(1957—), 男, 江苏无锡人, 博士, 教授。E-mail: yhx@cczu.edu.cn
更新日期/Last Update: 1900-01-01