参考文献/References:
[1] 吕继东, 王艺洁, 夏正旺, 等. 基于改进的Mask R-CNN自然场景下苹果识别研究[J]. 常州大学学报(自然科学版), 2022, 34(1): 68-77.
[2] 徐建东. 基于最小二乘法拟合的Otsu快速图像分割方法[J]. 常州大学学报(自然科学版), 2021, 33(1): 70-76.
[3] 翁玉尚, 肖金球, 夏禹. 改进Mask R-CNN算法的带钢表面缺陷检测[J]. 计算机工程与应用, 2021, 57(19): 235-242.
[4] 李维刚, 叶欣, 赵云涛, 等. 基于改进YOLOv3算法的带钢表面缺陷检测[J]. 电子学报, 2020, 48(7): 1284-1292.
[5] AO X, ZHANG D, MA W, et al. Automatic metallic surface defect detection and recognition with convolutional neural networks[J].Applied Sciences-Basel, 2018, 8(9): 123-138.
[6] 程婧怡, 段先华, 朱伟. 改进YOLOv3的金属表面缺陷检测研究[J]. 计算机工程与应用, 2021, 57(19): 252-258.
[7] LE X Y, MEI J H, ZHANG H D, et al. A learning-based approach for surface defect detection using small image datasets[J]. Neurocomputing, 2020, 408: 112-120.
[8] 罗菁, 董婷婷, 宋丹, 等. 表面缺陷检测综述[J]. 计算机科学与探索, 2014(9): 1041-1048.
[9] 严琴, 赵全育. 高频噪声下的螺栓表面缺陷检测[J]. 测控技术, 2021, 40(5): 75-79.
[10] SAAD N H, AHMAD A E, SALEH H M, et al. Automatic semiconductor wafer image segmentation for defect detection using multilevel thresholding[J]. MATEC Web of Conferences, 2016, 78: 01103.
[11] GILBLAS R, SENTENAC T, ORTEU J J, et al. Detection of micro-cracks on highly specular reflectors: dimensioning a vision machine based on optical properties[J]. IEEE Sensors Journal, 2017, 17(23): 7901-7907.
[12] JIAN C X, GAO J, AO Y H. Automatic surface defect detection for mobile phone screen glass based on machine vision[J]. Applied Soft Computing, 2017, 52: 348-358.
[13] YU H L, LIANG Y L, LIANG H, et al. Recognition of wood surface defects with near infrared spectroscopy and machine vision[J]. Journal of Forestry Research, 2019, 30(6): 2379-2386.
[14] LI Z L, DONG M H, WEN S P, et al. CLU-CNNs: object detection for medical images[J]. Neurocomputing, 2019, 350: 53-59.
[15] 高雅, 朱秦岭, 王珑. 基于机器视觉的护套编织线缺陷检测系统设计[J]. 测控技术, 2017, 36(9): 31-34.
[16] HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 386-397.
[17] 刘晓杰, 罗印升, 张旻, 等. 基于机器视觉的零部件表面缺陷检测方法研究[J]. 现代电子技术, 2017, 40(24): 181-183.
[18] 钱基德, 陈斌, 钱基业, 等. 基于机器视觉的液晶屏Mura缺陷检测方法[J]. 计算机科学, 2018, 45(6): 296-300, 313.
[19] 宋辉, 李钊. 基于工业机器人的汽车轮毂表面缺陷的视觉检测系统设计[J]. 计算机测量与控制, 2018, 26(9): 13-16, 22.
[20] 李超, 孙俊. 基于机器视觉方法的焊缝缺陷检测及分类算法[J]. 计算机工程与应用, 2018, 54(6): 264-270.
[21] 马永福. 基于机器视觉的H型钢表面缺陷检测[J]. 冶金与材料, 2019, 39(6): 13-14.
(责任编辑:李艳,周安迪)
相似文献/References:
[1]宋志理,胡胜利,王峰.基于深度学习特征表示协同过滤算法[J].常州大学学报(自然科学版),2021,33(01):62.[doi:10.3969/j.issn.2095-0411.2021.01.010]
SONG Zhili,HU Shengli,WANG Feng.Research on Cooperative Filtering Algorithm Based on Deep Learning Feature Representation[J].Journal of Changzhou University(Natural Science Edition),2021,33(05):62.[doi:10.3969/j.issn.2095-0411.2021.01.010]
[2]王洪元,徐志晨,陈海琴,等.基于金字塔分割和时空注意力的视频行人重识别[J].常州大学学报(自然科学版),2023,35(02):66.[doi:10.3969/j.issn.2095-0411.2023.02.008
]
WANG Hongyuan,XU Zhichen,CHEN Haiqin,et al.Video-based person re-identification based on pyramid segmentation and spatial-temporal attention[J].Journal of Changzhou University(Natural Science Edition),2023,35(05):66.[doi:10.3969/j.issn.2095-0411.2023.02.008
]
[3]罗俊如,丁言瑞,徐明华,等.基于深度AUC最大化算法的井漏风险预测[J].常州大学学报(自然科学版),2024,36(03):34.[doi:10.3969/j.issn.2095-0411.2024.03.005]
LUO Junru,DING Yanrui,XU Minghua,et al.Lost circulation prediction based on deep AUC maximization[J].Journal of Changzhou University(Natural Science Edition),2024,36(05):34.[doi:10.3969/j.issn.2095-0411.2024.03.005]