参考文献/References:
[1] LEI Y G, YANG B, JIANG X W, et al. Applications of machine learning to machine fault diagnosis: a review and roadmap[J]. Mechanical Systems and Signal Processing, 2020, 138: 106587.
[2] LIU R N, YANG B Y, ZIO E, et al. Artificial intelligence for fault diagnosis of rotating machinery: a review[J]. Mechanical Systems and Signal Processing, 2018, 108: 33-47.
[3] 雷亚国, 贾峰, 孔德同, 等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报, 2018, 54(5): 94-104.
[4] 王国彪, 何正嘉, 陈雪峰, 等. 机械故障诊断基础研究“何去何从”[J]. 机械工程学报, 2013, 49(1): 63-72.
[5] LI X, YANG Y, HU N Q, et al. Discriminative manifold random vector functional link neural network for rolling bearing fault diagnosis[J]. Knowledge-Based Systems, 2021, 211: 106507.
[6] 李巍华, 翁胜龙, 张绍辉. 一种萤火虫神经网络及在轴承故障诊断中的应用[J]. 机械工程学报, 2015, 51(7): 99-106.
[7] WANG B, KE H W, MA X D, et al. Fault diagnosis method for engine control system based on probabilistic neural network and support vector machine[J]. Applied Sciences, 2019, 9(19): 4122.
[8] LI X, YANG Y, PAN H Y, et al. A novel deep stacking least squares support vector machine for rolling bearing fault diagnosis[J]. Computers in Industry, 2019, 110: 36-47.
[9] LEI Y G, ZUO M J. Gear crack level identification based on weighted K nearest neighbor classification algorithm[J]. Mechanical Systems and Signal Processing, 2009, 23(5): 1535-1547.
[10] XING S B, LEI Y G, WANG S H, et al. Distribution-invariant deep belief network for intelligent fault diagnosis of machines under new working conditions[J]. IEEE Transactions on Industrial Electronics, 2021, 68(3): 2617-2625.
[11] 王毅, 戴国洪, 王克胜. 深度学习技术在预测维修中的应用综述[J]. 常州大学学报(自然科学版), 2019, 31(3): 1-22.
[12] YANG B, LEI Y G, JIA F, et al. A polynomial kernel induced distance metric to improve deep transfer learning for fault diagnosis of machines[J]. IEEE Transactions on Industrial Electronics, 2020, 67(11): 9747-9757.
[13] YANG B, LEI Y G, JIA F, et al. An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings[J]. Mechanical Systems and Signal Processing, 2019, 122: 692-706.
[14] CHAI Z, ZHAO C H. Multiclass oblique random forests with dual-incremental learning capacity[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(12): 5192-5203.
[15] YU W K, ZHAO C H. Broad convolutional neural network based industrial process fault diagnosis with incremental learning capability[J]. IEEE Transactions on Industrial Electronics, 2020, 67(6): 5081-5091.
[16] LI D, LIU S L, GAO F R, et al. Continual learning classification method with constant-sized memory cells based on the artificial immune system[J]. Knowledge-Based Systems, 2021, 213: 106673.
[17] LI D, LIU S L, GAO F R, et al. Continual learning classification method with new labeled data based on the artificial immune system[J]. Applied Soft Computing, 2020, 94: 106423.
[18] 李栋, 刘树林, 孙欣. 针对不连续时变样本空间的连续学习故障诊断方法[J]. 机械工程学报, 2021, 57(1): 157-167.
[19] KOTSIANTIS S B, ZAHARAKIS I D, PINTELAS P E. Machine learning: a review of classification and combining techniques[J]. Artificial Intelligence Review, 2006, 26(3): 159-190.
[20] DONG L, LIU S L, ZHANG H L. A method of anomaly detection and fault diagnosis with online adaptive learning under small training samples[J]. Pattern Recognition, 2017, 64: 374-385.
(责任编辑:谭晓荷)
相似文献/References:
[1]袁兆辉,吴泽龙,颜惠庚.液压胀管机的压力测控及故障诊断[J].常州大学学报(自然科学版),2002,(03):30.
YUAN Zhao -hui,WU Zhe -long,YAN Hui -gen.The Pressure Test and Control and Diagnosis of Faults of the Machine for
Hydraulic Expanding of Tube to Tube[J].Journal of Changzhou University(Natural Science Edition),2002,(06):30.
[2]王洪元,史国栋,符彦惟,等.数据挖掘技术在故障诊断中的应用[J].常州大学学报(自然科学版),2001,(04):42.
WANG Hong -yuan,SHI Gou -dong,FU Yan -wei,et al.Data Mining Technique and its Application in Fault Diagnosi s[J].Journal of Changzhou University(Natural Science Edition),2001,(06):42.