[1]江小龙,邢书明,甘玉秀,等.液锻压力对亚共晶Al-Si合金吊架的组织与性能影响[J].常州大学学报(自然科学版),2023,35(01):10-17.[doi:10.3969/j.issn.2095-0411.2023.01.002]
 JIANG Xiaolong,XING Shuming,GAN Yuxiu,et al.Effect of liquid forging pressure on microstructure and properties of hypoeutectic Al-Si alloy hanger[J].Journal of Changzhou University(Natural Science Edition),2023,35(01):10-17.[doi:10.3969/j.issn.2095-0411.2023.01.002]
点击复制

液锻压力对亚共晶Al-Si合金吊架的组织与性能影响()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第35卷
期数:
2023年01期
页码:
10-17
栏目:
材料科学与工程:液态模锻专题
出版日期:
2023-01-28

文章信息/Info

Title:
Effect of liquid forging pressure on microstructure and properties of hypoeutectic Al-Si alloy hanger
文章编号:
2095-0411(2023)01-0010-08
作者:
江小龙1邢书明1甘玉秀2邢三臭2
(1.北京交通大学机械与电子控制工程学院,北京100044;2.天津金轮晟宇科技有限公司,天津301700)
Author(s):
JIANG Xiaolong1 XING Shuming1 GAN Yuxiu2 XING Sanchou2
(1.School of Mechanical and Electronic Control Engineering, Beijing Jiaotong University,Beijing 100044, China; 2.Tianjin Golden Wheel Shengyu Technology Co., Ltd., Tianjin 301700, China)
关键词:
液态模锻 Al-Si合金 成形质量 微观组织 力学性能 共晶团
Keywords:
liquid forging Al-Si alloy forming quality microstructure mechanical properties eutectic cell
分类号:
TG 319
DOI:
10.3969/j.issn.2095-0411.2023.01.002
文献标志码:
A
摘要:
研究了液态模锻工艺下,亚共晶Al-Si合金吊架在不同液锻压力下的成形质量、力学性能及不同位置处的微观组织。结果表明,随着压力的增加,铸件的成形质量逐渐提高,液锻压力为128 MPa时,抗拉强度为250.7 MPa,断后伸长率为9.7%,力学性能最好,较0 MPa下的抗拉强化及断后伸长率分别增加了14.5%和547%,之后再增加压力,对吊架的力学性能无明显强化效果。此外,随着压力的增加,晶粒得到细化,Si相逐渐球化,且高压力下团聚现象明显,二次枝晶臂间距(SDAS)先减小后基本保持不变,在154 MPa时取得最小值16.3 μm,SDAS仅为0 MPa时的54.2%,比50 MPa液锻压力下SDAS减少24.5%,共晶团尺寸则是先减小再增大,共晶团尺寸为308 μm时对基体产生割裂作用,从而影响力学性能。
Abstract:
The forming quality, mechanical properties, and microstructure at different positions of hypoeutectic Al-Si alloy hangers under different liquid forging pressures, with the liquid forging process, were studied. The results show that with the increase of pressure, the forming quality of castings is gradually improved. When the liquid forging pressure is 128 MPa, the tensile strength is 250.7 MPa,the elongation after fracture is 9.7%, and the mechanical properties are the best. Compared with 0 MPa, the tensile strengthening and elongation after fracture of metal mold casting are increased by 14.5% and 547% respectively. After that, increasing the pressure has no obvious strengthening effect on the mechanical properties of the hanger. In addition, with the increase of pressure, the grain is refined, the Si phase is gradually spheroidized, and the agglomeration phenomenon is obvious under high pressure. The distance between the secondary dendrite arms(SDAS)decreases at first and then remains almost unchanged, reaching the minimum value of 16.3 μm at 154 MPa. And the distance between SDAS is only 54.2% of that at 0 MPa, which is 24.5% lower than that at 50 MPa liquid forging pressure. The eutectic cluster size decreases first and then increases. When the eutectic cell size is 308 μm, it will split the matrix, thus affecting the mechanical properties.

参考文献/References:

[1] ROSSO M, PETER I, BIVOL C, et al. Development of industrial components by advanced squeeze casting[J].International Journal of Material Forming, 2010, 3(1): 787-790.
[2] SHANKAR S, RIDDLE Y W, MAKHLOUF M M. Nucleation mechanism of the eutectic phases in aluminum-silicon hypoeutectic alloys[J]. Acta Materialia, 2004, 52(15): 4447-4460.
[3] BASAVAKUMAR K G, MUKUNDA P G, CHAKRABORTY M. Influence of grain refinement and modification on microstructure and mechanical properties of Al-7Si and Al-7Si-2.5Cu cast alloys[J]. Materials Characterization, 2008, 59(3): 283-289.
[4] DAVIS J R. Corrosion of aluminum and aluminum alloys[M]. Ohio: ASM International, 1993.
[5] SENTHIL P, AMIRTHAGADESWARAN K S. Experimental study and squeeze casting process optimization for high quality AC2A aluminium alloy castings[J]. Arabian Journal for Science and Engineering, 2014, 39(3): 2215-2225.
[6] BIN S B, XING S M, TIAN L M, et al. Influence of technical parameters on strength and ductility of AlSi9Cu3 alloys in squeeze casting[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(4): 977-982.
[7] 杨文, 李金玺, 韩志强, 等. 挤压铸造压力对铝合金铸件微观孔洞影响的研究[J]. 特种铸造及有色合金, 2010, 30(1): 54-56, 125.
[8] 邓腾. A356铸造铝合金液态模锻成形工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
[9] PATEL G C M, KRISHNA P, PARAPPAGOUDAR M B. Optimization of squeeze cast process parameters using taguchi and grey relational analysis[J]. Procedia Technology, 2014, 14: 157-164.
[10] ZHAO H D, WANG F, LI Y Y, et al. Experimental and numerical analysis of gas entrapment defects in plate ADC12 Die castings[J]. Journal of Materials Processing Technology, 2009, 209(9): 4537-4542.
[11] AZHAGAN M T, MOHAN B, RAJADURAI A. Experimental study of squeeze casting of aluminium alloy AA6061[J]. Applied Mechanics and Materials, 2015, 766/767: 422-426.
[12] 胡汉起. 金属凝固原理[M]. 北京: 机械工业出版社, 2000.
[13] LI R X, LI R D, BAI Y H. Effect of specific pressure on microstructure and mechanical properties of squeeze casting ZA27 alloy[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(1): 59-63.
[14] 周威虎, 王瑞, 王东涛, 等. 共晶Si团聚对挤压铸造Al-Si-Mg合金性能的影响[J]. 特种铸造及有色合金, 2022, 42(7): 864-869.

相似文献/References:

[1]邢书明,邢若兰.液态模锻(挤压铸造)技术研究与应用进展[J].常州大学学报(自然科学版),2021,33(05):1.[doi:10.3969/j.issn.2095-0411.2021.05.001]
 XING Shuming,XING Ruolan.Research and Application Progress of Molten Metal Die Forging(Squeeze Casting)Technology[J].Journal of Changzhou University(Natural Science Edition),2021,33(01):1.[doi:10.3969/j.issn.2095-0411.2021.05.001]
[2]王 营,邢书明.铝合金液态模锻流变充型能力预报模型[J].常州大学学报(自然科学版),2021,33(05):15.[doi:10.3969/j.issn.2095-0411.2021.05.003]
 WANG Ying,XING Shuming.Prediction Model of Rheological Filling Ability for Aluminum Alloy in Molten Metal Die Forging[J].Journal of Changzhou University(Natural Science Edition),2021,33(01):15.[doi:10.3969/j.issn.2095-0411.2021.05.003]
[3]武彤,邢书明,刘鑫.液态模锻2A50铝合金轮毂宏观缺陷?微观组织和力学性能研究[J].常州大学学报(自然科学版),2021,33(06):8.[doi:10.3969/j.issn.2095-0411.2021.06.002]
 WU Tong,XING Shuming,LIU Xin.Study on Macroscopic Defects, Microstructure and Mechanical Properties of 2A50 Aluminum Alloy Wheel Hub by Molten Metals Die Forging[J].Journal of Changzhou University(Natural Science Edition),2021,33(01):8.[doi:10.3969/j.issn.2095-0411.2021.06.002]
[4]邢书明,武彤,孙鸿基,等.变形铝合金液态模锻及其研究进展[J].常州大学学报(自然科学版),2022,34(06):1.[doi:10.3969/j.issn.2095-0411.2022.06.001]
 XING Shuming,WU Tong,SUN Hongji,et al.Wrought Aluminum Alloy for Molten Metal Die Forging(MMDF)and Its Progress[J].Journal of Changzhou University(Natural Science Edition),2022,34(01):1.[doi:10.3969/j.issn.2095-0411.2022.06.001]
[5]单爱丽,邢书明,宋文明,等.液态模锻高铬铸铁亚温淬火工艺研究[J].常州大学学报(自然科学版),2023,35(01):1.[doi:10.3969/j.issn.2095-0411.2023.01.001]
 SHAN Aili,XING Shuming,SONG Wenming,et al.Study on intercritical quenching process of high chromium cast iron by melted metal die forging[J].Journal of Changzhou University(Natural Science Edition),2023,35(01):1.[doi:10.3969/j.issn.2095-0411.2023.01.001]

备注/Memo

备注/Memo:
收稿日期: 2022-10-22。
作者简介: 江小龙(1994—), 男, 安徽安庆人, 硕士生。通信联系人: 邢书明(1962—), E-mail: smxing@bjtu.edu.cn
更新日期/Last Update: 1900-01-01