参考文献/References:
[1] NI T G, DING Z Y, CHEN F H, et al. Relative distance metric leaning based on clustering centralization and projection vectors learning for person re-identification[J]. IEEE Access, 2018, 6: 11405-11411.
[2] NI T G, GU X Q, WANG H Y, et al. Discriminative deep transfer metric learning for cross-scenario person re-identification[J]. Journal of Electronic Imaging, 2018, 27(4): 043026.
[3] WANG H Y, ZHANG W W, SUN J Y, et al. A sparse dimension-reduction based person re-identification algorithm[C]//SPIE Commercial + Scientific Sensing and Imaging. Orlando: SPIE, 2018: 190-202.
[4] DING Z Y, WANG H Y, CHEN F H, et al. Person re-identification by semi-supervised dictionary rectification learning[C]//SPIE Commercial + Scientific Sensing and Imaging. Orlando: SPIE, 2018: 172-181.
[5] WANG H Y, WU L Y, CHEN F H, et al. Common-covariance based person re-identification model[J]. Pattern Recognition Letters, 2021, 146: 77-82.
[6] XIAO Y, CAO L, WANG H Y, et al. Unsupervised video-based person re-identification based on the joint global-local metrics[C]//2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems(CCIS). Xi'an: IEEE, 2022: 176-182.
[7] 张云鹏, 王洪元, 张继, 等. 近邻中心迭代策略的单标注视频行人重识别[J]. 软件学报, 2021, 32(12): 4025-4035.
[8] 丁宗元, 王洪元, 陈付华, 等. 基于距离中心化与投影向量学习的行人重识别[J]. 计算机研究与发展, 2017, 54(8): 1785-1794.
[9] 戴臣超, 王洪元, 倪彤光, 等. 基于深度卷积生成对抗网络和拓展近邻重排序的行人重识别[J]. 计算机研究与发展, 2019, 56(8): 1632-1641.
[10] 陈莉, 王洪元, 张云鹏, 等. 联合均等采样随机擦除和全局时间特征池化的视频行人重识别方法[J]. 计算机应用, 2021, 41(1): 164-169.
[11] 徐志晨, 王洪元, 齐鹏宇, 等. 基于图模型与加权损失策略的视频行人重识别研究[J]. 计算机应用研究, 2022, 39(2): 598-603.
[12] LI J N, ZHANG S L, WANG J D, et al. Global-local temporal representations for video person re-identification[C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV). Seoul: IEEE, 2020: 3957-3966.
[13] WU X H, AN W Z, YU S Q, et al. Spatial-temporal graph attention network for video-based gait recognition[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2020: 274-286.
[14] WU Y M, EL FAROUK BOURAHLA O, LI X, et al. Adaptive graph representation learning for video person re-identification[J]. IEEE Transactions on Image Processing, 2020, 29: 8821-8830.
[15] YANG J R, ZHENG W S, YANG Q Z, et al. Spatial-temporal graph convolutional network for video-based person re-identification[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Seattle: IEEE, 2020: 3286-3296.
[16] LIU J W, ZHA Z J, WU W, et al. Spatial-temporal correlation and topology learning for person re-identification in videos[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Nashville: IEEE, 2021: 4368-4377.
[17] CHEN L, YANG H, GAO Z Y. Joint attentive spatial-temporal feature aggregation for video-based person re-identification[J]. IEEE Access, 2019, 7: 41230-41240.
[18] ZHU X R, LIU J W, WU H Z, et al. ASTA-net: adaptive spatio-temporal attention network for person re-identification in videos[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 1706-1715.
[19] ZHANG R M, LI J Y, SUN H B, et al. SCAN: self-and-collaborative attention network for video person re-identification[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2019, 28(10): 4870-4882.
[20] WANG Y Q, ZHANG P P, GAO S, et al. Pyramid spatial-temporal aggregation for video-based person re-identification[C]//2021 IEEE/CVF International Conference on Computer Vision(ICCV). Montreal: IEEE, 2022: 12006-12015.
[21] HOU R B, CHANG H, MA B P, et al. BiCnet-TKS: learning efficient spatial-temporal representation for video person re-identification[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Nashville: IEEE, 2021: 2014-2023.
[22] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[23] ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu: IEEE, 2017: 6230-6239.
[24] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las: IEEE, 2016: 770-778.
[25] LI J N, ZHANG S L, HUANG T J. Multi-scale 3D convolution network for video based person re-identification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 8618-8625.
[26] ZHANG Z Z, LAN C L, ZENG W J, et al. Relation-aware global attention for person re-identification[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Seattle: IEEE, 2020: 3183-3192.
[27] HE T Y, JIN X, SHEN X, et al. Dense interaction learning for video-based person re-identification[C]//2021 IEEE/CVF International Conference on Computer Vision(ICCV). Montreal: IEEE, 2022: 1470-1481.
[28] DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 248-255.
[29] LUO H, GU Y Z, LIAO X Y, et al. Bag of tricks and a strong baseline for deep person re-identification[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW). Long Beach: IEEE, 2020: 1487-1495.
[30] SUBRAMANIAM A, NAMBIAR A, MITTAL A. Co-segmentation inspired attention networks for video-based person re-identification[C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV). Seoul: IEEE, 2020: 562-572.
[31] HOU R B, CHANG H, MA B P, et al. Temporal complementary learning for video person re-identification[M]//Computer Vision-ECCV 2020. Cham: Springer International Publishing, 2020: 388-405.
[32] CHEN G Y, RAO Y M, LU J W, et al. Temporal coherence or temporal motion: which is more critical for video-based person re-identification? [M]//Computer Vision-ECCV 2020. Cham: Springer International Publishing, 2020: 660-676.
[33] YAN Y C, QIN J, CHEN J X, et al. Learning multi-granular hypergraphs for video-based person re-identification[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Seattle: IEEE, 2020: 2896-2905.
[34] ZHANG Z Z, LAN C L, ZENG W J, et al. Multi-granularity reference-aided attentive feature aggregation for video-based person re-identification[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Seattle: IEEE, 2020: 10404-10413.
(责任编辑:谭晓荷)
相似文献/References:
[1]宋志理,胡胜利,王峰.基于深度学习特征表示协同过滤算法[J].常州大学学报(自然科学版),2021,33(01):62.[doi:10.3969/j.issn.2095-0411.2021.01.010]
SONG Zhili,HU Shengli,WANG Feng.Research on Cooperative Filtering Algorithm Based on Deep Learning Feature Representation[J].Journal of Changzhou University(Natural Science Edition),2021,33(02):62.[doi:10.3969/j.issn.2095-0411.2021.01.010]
[2]吴鹏,陈信华,马宇超,等.基于优化深度学习的电动桥铸件表面瑕疵识别方法[J].常州大学学报(自然科学版),2022,34(05):65.[doi:10.3969/j.issn.2095-0411.2022.05.009]
WU Peng,CHEN Xinhua,MA Yuchao,et al.Research on Casting Surface Defects of Electric Bridge Identification Method Based on Optimal Deep Learning[J].Journal of Changzhou University(Natural Science Edition),2022,34(02):65.[doi:10.3969/j.issn.2095-0411.2022.05.009]
[3]罗俊如,丁言瑞,徐明华,等.基于深度AUC最大化算法的井漏风险预测[J].常州大学学报(自然科学版),2024,36(03):34.[doi:10.3969/j.issn.2095-0411.2024.03.005]
LUO Junru,DING Yanrui,XU Minghua,et al.Lost circulation prediction based on deep AUC maximization[J].Journal of Changzhou University(Natural Science Edition),2024,36(02):34.[doi:10.3969/j.issn.2095-0411.2024.03.005]