[1]孙堂磊,雷廷宙,杨延涛,等.基于分子筛催化剂的玉米秸秆与聚丙烯催化共热解[J].常州大学学报(自然科学版),2023,35(03):30-40.[doi:10.3969/j.issn.2095-0411.2023.03.005 ]
 SUN Tanglei,LEI Tingzhou,YANG Yantao,et al.Catalytic co-pyrolysis of corn stalk and polypropylene over molecular sieve[J].Journal of Changzhou University(Natural Science Edition),2023,35(03):30-40.[doi:10.3969/j.issn.2095-0411.2023.03.005 ]
点击复制

基于分子筛催化剂的玉米秸秆与聚丙烯催化共热解 ()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第35卷
期数:
2023年03期
页码:
30-40
栏目:
化学化工
出版日期:
2023-05-28

文章信息/Info

Title:
Catalytic co-pyrolysis of corn stalk and polypropylene over molecular sieve
文章编号:
2095-0411(2023)03-0030-11
作者:
孙堂磊12雷廷宙12杨延涛12刘鹏12张橹1
(1.常州大学 城乡矿山研究院, 江苏 常州 213164; 2.常州市生物质绿色安全高值利用技术重点实验室, 江苏 常州 213164)
Author(s):
SUN Tanglei12 LEI Tingzhou12 YANG Yantao12 LIU Peng12 ZHANG Lu1
(1.Institute of Urban & Rural Mining, Changzhou University, Changzhou 213164, China; 2.National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou 213164, China)
关键词:
玉米秸秆 聚丙烯 催化共热解 产物分布 旋转床反应器
Keywords:
corn stalk polypropylene catalytic co-pyrolysis product distribution rotating bed reactor
分类号:
TK 6
DOI:
10.3969/j.issn.2095-0411.2023.03.005
文献标志码:
A
摘要:
采用双金属(Zn,Al)改性MCM-41催化玉米秸秆与聚丙烯共热解制备芳香烃,并基于旋转床反应器研究玉米秸秆与聚丙烯催化共热解的产物分布。结果表明:催化剂的添加对热解产物的分布影响显著,在质量分数为1%的Zn和3%的Al共改性MCM-41的催化作用下,芳香烃(24.31%)含量最高,含氧化合物(12.37%)含量最低。旋转床催化共热解实验中,随着反应温度(500~800 ℃)的增加,生物油的产率逐渐下降,生物油中烯烃和含氧化合物含量的下降使得芳香烃的含量显著增加。随着催化剂添加量(1:0~1:10)的增加,生物油的产率逐渐减少。热解油中芳香烃的含量显著增加,烯烃和含氧化合物的含量下降。随着转速(0~20 r/min)的增加,生物油的产率呈现先减小后增大的趋势,生物油中芳香烃、烯烃和含氧化合物含量的最值均在15 r/min时获得。
Abstract:
This paper investigates separate pyrolysis of corn stalk(CS)and polypropylene(PP)and co-pyrolysis of CS and PP over Zn-Al co-modified MCM-41 to produce aromatics, and the product distribution of catalytic co-pyrolysis of CS and PP was studied based on a rotating bed reactor. The results showed that the product contents and composition were significantly influenced in the presence of catalysts. Zn and Al showed a certain synergistic effect, under the catalysis of MCM-41 co-modified by Zn with mass fraction of 1% and Al with mass fraction of 3%, and the maximum proportions of aromatics(24.31%)and the minimum production of oxygenated compounds(12.37%)were obtained. In the experiment of catalytic co-pyrolysis of CS and PP in rotating bed, with the increase of pyrolysis temperature(500—800 ℃), the yield of bio-oil decreased gradually. The decrease of olefins and oxygenates in bio-oil significantly increased the content of aromatic hydrocarbons. With the increase of catalyst dosage(1:0—1:10), the yield of bio-oil reduced gradually. The contents of aromatic hydrocarbons in bio-oil increased obviously, while the contents of olefins and oxygenates decreased. With the increase of rotating speed(0—20 r/min), the yield of bio-oil first decreased and then increased. The extreme values of aromatics, olefins, and oxygenates in bio-oil were all obtained at 15 r/min.

参考文献/References:

[1] 刘鹏, 刘莉, 周政忠, 等. 垃圾渗滤液污泥的有机结构对热解行为的影响[J]. 常州大学学报(自然科学版), 2021, 33(5): 69-76.
[2] 王体朋, 张润禾, 彭立, 等. 生物质选择性催化热解制备芳香烃的研究进展[J]. 生物质化学工程, 2018, 52(4): 53-59.
[3] WANG Z W, LEI T Z, YANG M, et al. Life cycle environmental impacts of cornstalk briquette fuel in China[J]. Applied Energy, 2017, 192: 83-94.
[4] SUN T L, LEI T Z, LI Z F, et al. Catalytic co-pyrolysis of corn stalk and polypropylene over Zn-Al modified MCM-41 catalysts for aromatic hydrocarbon-rich oil production[J]. Industrial Crops and Products, 2021, 171: 113843.
[5] 郑志锋, 郑云武, 黄元波, 等. 木质生物质催化热解制备富烃生物油研究进展[J]. 林业工程学报, 2019, 4(2): 1-12.
[6] OJHA D K, VIJU D, VINU R. Fast pyrolysis kinetics of lignocellulosic biomass of varying compositions[J]. Energy Conversion and Management, 2021, 10: 100071.
[7] 张大山, 戴如娟, 毛林强, 等. 石化剩余污泥理化性能与热动力学特性研究[J]. 常州大学学报(自然科学版), 2022, 34(1): 33-41.
[8] LU Q, YE X N, ZHANG Z X, et al. Catalytic fast pyrolysis of sugarcane bagasse using activated carbon catalyst in a hydrogen atmosphere to selectively produce 4-ethyl phenol[J]. Journal of Analytical and Applied Pyrolysis, 2018, 136: 125-131.
[9] 张会岩, 杨海平, 陆强, 等. 生物质定向热解制取高品质液体燃料、化学品和碳材料研究进展[J]. 工程热物理学报, 2021, 42(12): 3031-3044.
[10] HUANG M, MA Z Q, ZHOU B L, et al. Enhancement of the production of bio-aromatics from renewable lignin by combined approach of torrefaction deoxygenation pretreatment and shape selective catalytic fast pyrolysis using metal modified zeolites[J]. Bioresource Technology, 2020, 301: 122754.
[11] SUN H R, LUO Z Y, WANG W B, et al. Porosity roles of micro-mesostructured ZSM-5 in catalytic fast pyrolysis of cellulolytic enzyme lignin for aromatics[J]. Energy Conversion and Management, 2021, 247: 114753.
[12] ZHANG J, GU J, YUAN H R, et al. Catalytic fast pyrolysis of waste mixed cloth for the production of value-added chemicals[J]. Waste Management, 2021, 127: 141-146.
[13] CHEN X, CHEN Y Q, YANG H P, et al. Catalytic fast pyrolysis of biomass: selective deoxygenation to balance the quality and yield of bio-oil[J]. Bioresource Technology, 2019, 273: 153-158.
[14] WANG J, JIANG J C, ZHONG Z P, et al. Catalytic fast co-pyrolysis of bamboo sawdust and waste plastics for enhanced aromatic hydrocarbons production using synthesized CeO2/γ-Al2O3 and HZSM-5[J]. Energy Conversion and Management, 2019, 196: 759-767.
[15] SUN T L, LI Z F, ZHANG Z P, et al. Fast corn stalk pyrolysis and the influence of catalysts on product distribution[J]. Bioresource Technology, 2020, 301: 122739.
[16] WANG G Y, DAI G X, DING S Q, et al. A new insight into pyrolysis mechanism of three typical actual biomass: the influence of structural differences on pyrolysis process[J]. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105184.
[17] WANI LIKUN P K, ZHANG H Y. Insights into pyrolysis of torrefied-biomass, plastics/tire and blends: thermochemical behaviors, kinetics and evolved gas analyses[J]. Biomass and Bioenergy, 2020, 143: 105852.
[18] CHI Y C, XUE J J, ZHUO J K, et al. Catalytic co-pyrolysis of cellulose and polypropylene over all-silica mesoporous catalyst MCM-41 and Al-MCM-41[J]. Science of the Total Environment, 2018, 633: 1105-1113.
[19] YAO N Y, CAO J P, ZHAO J P, et al. Efficient and selective catalytic pyrolysis of cellulose to monocyclic aromatic hydrocarbons over Zn-containing HZSM-5[J]. Fuel, 2022, 310: 122437.
[20] SUN T L, LEI T Z, LI Z F, et al. Optimization of the pyrolysis carbonization of various corn stalk parts in a rotating bed reactor based on energy yield[J]. Journal of Biobased Materials and Bioenergy, 2018, 12(4): 378-386.
[21] XU J C, LIAO Y F, LIN Y, et al. Study on catalytic pyrolysis of eucalyptus to produce aromatic hydrocarbons by Zn-Fe-Co modified HZSM-5 catalysts[J]. Journal of Analytical and Applied Pyrolysis, 2019, 139: 96-103.
(责任编辑:谭晓荷)

相似文献/References:

[1]任 强.聚丙烯/ 聚丙烯接枝丙烯酸/ 蒙脱土 纳米复合材料的制备及性能[J].常州大学学报(自然科学版),2004,(02):1.
 REN Qiang.Preparation and Properties of Polypropylene/ Montmorillonite Nanocomposites Using Graft Copolymer of Polypropylene and Acrylic Acid as Compatilizer[J].Journal of Changzhou University(Natural Science Edition),2004,(03):1.
[2]吴洁,鞠伟轶,张鑫,等.新型聚丙烯阻隔防爆材料与M45甲醇汽油相容性影响[J].常州大学学报(自然科学版),2022,34(02):87.[doi:10.3969/j.issn.2095-0411.2022.02.011]
 WU Jie,JU Weiyi,ZHANG Xin,et al.Effect of Polypropylene Barrier Explosion-Proof Material on the Performance of M45 Methanol Gasoline[J].Journal of Changzhou University(Natural Science Edition),2022,34(03):87.[doi:10.3969/j.issn.2095-0411.2022.02.011]

备注/Memo

备注/Memo:
收稿日期: 2022-12-10。
基金项目: 常州市应用基础研究计划资助项目(CJ20220246)。
作者简介: 孙堂磊(1989—), 男, 河南新乡人, 博士, 讲师。 通信联系人: 雷廷宙(1963—), E-mail: china_newenergy@163.com

更新日期/Last Update: 1900-01-01