参考文献/References:
[1] LI Z D, ZHANG T, WANG M Y, et al. Hierarchical structurized waste brick with opposite wettability for on-demand oil/water separation[J]. Chemosphere, 2020, 251: 126348.
[2] XU P, LI X X. Fabrication of TiO2/SiO2 superhydrophobic coating for efficient oil/water separation[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105538.
[3] WANG J T, HAN F L, CHEN Y H, et al. A pair of MnO2 nanocrystal coatings with inverse wettability on metal meshes for efficient oil/water separation[J]. Separation and Purification Technology, 2019, 209: 119-127.
[4] WU X W, LUO Z, LEI Y, et al. Hierarchical TiO2 nanorod arrays/carbon nanofiber membranes for oil-in-water emulsion separation[J]. Industrial & Engineering Chemistry Research, 2020, 59(48): 21097-21105.
[5] CAO J L, SU Y L, LIU Y N, et al. Self-assembled MOF membranes with underwater superoleophobicity for oil/water separation[J]. Journal of Membrane Science, 2018, 566: 268-277.
[6] WANG B, LIANG W X, GUO Z G, et al. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature[J]. Chemical Society Reviews, 2015, 44(1): 336-361.
[7] XIE A T, CUI J Y, YANG J, et al. Photo-Fenton self-cleaning membranes with robust flux recovery for an efficient oil/water emulsion separation[J]. Journal of Materials Chemistry A, 2019, 7(14): 8491-8502.
[8] SUN Y H, ZHAO R G, WANG Q Y, et al. Superwetting TiO2-decorated single-walled carbon nanotube composite membrane for highly efficient oil-in-water emulsion separation[J]. Korean Journal of Chemical Engineering, 2020, 37(11): 2054-2063.
[9] MENG F N, ZHANG M Q, DING K, et al. Cell membrane mimetic PVDF microfiltration membrane with enhanced antifouling and separation performance for oil/water mixtures[J]. Journal of Materials Chemistry A, 2018, 6(7): 3231-3241.
[10] ZHENG X, GUO Z Y, TIAN D L, et al. Underwater self-cleaning scaly fabric membrane for oily water separation[J]. ACS Applied Materials & Interfaces, 2015, 7(7): 4336-4343.
[11] WEI C J, LIN L G, ZHAO Y P, et al. Fabrication of pH-sensitive superhydrophilic/underwater superoleophobic poly(vinylidene fluoride)-graft-(SiO2 nanoparticles and PAMAM dendrimers)membranes for oil-water separation[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 19130-19139.
[12] XIONG Z, LIN H B, ZHONG Y, et al. Robust superhydrophilic polylactide(PLA)membranes with a TiO2 nano-particle inlaid surface for oil/water separation[J]. Journal of Materials Chemistry A, 2017, 5(14): 6538-6545.
[13] VENKATESH K, ARTHANAREESWARAN G, CHANDRA B A, et al. Diethylenetriaminepentaacetic acid-functionalized multi-walled carbon nanotubes/titanium oxide-PVDF nanofiber membrane for effective separation of oil/water emulsion[J]. Separation and Purification Technology, 2021, 257: 117926.
[14] 罗钟琳, 李炎, 段聪, 等. PDMS/SiO2/PVDF/KH-550超疏水铜网的制备[J]. 常州大学学报(自然科学版), 2019, 31(4): 31-38.
[15] CHEN F T, SHI X X, CHEN X B, et al. Preparation and characterization of amphiphilic copolymer PVDF-g-PMABS and its application in improving hydrophilicity and protein fouling resistance of PVDF membrane[J]. Applied Surface Science, 2018, 427: 787-797.
[16] LI Z K, LANG W Z, MIAO W, et al. Preparation and properties of PVDF/SiO2@GO nanohybrid membranes via thermally induced phase separation method[J]. Journal of Membrane Science, 2016, 511: 151-161.
[17] YANG R, JANG H, STOCKER R, et al. Synergistic prevention of biofouling in seawater desalination by zwitterionic surfaces and low-level chlorination[J]. Advanced Materials, 2014, 26(11): 1711-1718.
[18] QIN A W, LI X, MA B M, et al. Preparation and characterization of poly(vinylidene)fluoride membranes reinforced by modified nano-SiO2 particles[J]. Materials Science Forum, 2014, 789: 201-204.
[19] HONG X T, ZHOU Y M, YE Z L, et al. Enhanced hydrophilicity and antibacterial activity of PVDF ultrafiltration membrane using Ag3PO4/TiO2 nanocomposite against E.coli[J]. Desalination and Water Treatment, 2017, 75: 26-33.
[20] LI J, ZHAO Z H, SHEN Y Q, et al. Fabrication of attapulgite coated membranes for effective separation of oil-in-water emulsion in highly acidic, alkaline, and concentrated salty environments[J]. Advanced Materials Interfaces, 2017, 4(16): 1700364.
[21] WANG X Y, LI M J, SHEN Y Q, et al. Facile preparation of loess-coated membranes for multifunctional surfactant-stabilized oil-in-water emulsion separation[J]. Green Chemistry, 2019, 21(11): 3190-3199.
[22] ZHANG H J, SHEN Y Q, LI M J, et al. Egg shell powders-coated membrane for surfactant-stabilized crude oil-in-water emulsions efficient separation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12): 10880-10887.
[23] LAOKUL P, AMORNKITBAMRUNG V, SERAPHIN S, et al. Characterization and magnetic properties of nanocrystalline CuFe2O4, NiFe2O4, ZnFe2O4 powders prepared by the Aloe vera extract solution[J]. Current Applied Physics, 2011, 11(1): 101-108.
[24] LIU Y, LI C, XU J, et al. Electroactivation-induced spinel ZnV2O4 as a high-performance cathode material for aqueous zinc-ion battery[J]. Nano Energy, 2020, 67: 104211.
[25] ZHANG S, LIU S J, ZHU X C, et al. Low temperature catalytic oxidation of propane over cobalt-cerium spinel oxides catalysts[J]. Applied Surface Science, 2019, 479: 1132-1140.
[26] MADDAHFAR M, RAMEZANI M, SADEGHI M, et al. NiAl2O4 nanoparticles: synthesis and characterization through modify sol-gel method and its photocatalyst application[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(10): 7745-7750.
[27] ATCHUTA S R, SAKTHIVEL S, BARSHILIA H C. Nickel doped cobaltite spinel as a solar selective absorber coating for efficient photothermal conversion with a low thermal radiative loss at high operating temperatures[J]. Solar Energy Materials and Solar Cells, 2019, 200: 109917.
[28] HAO X D, LIU T, LI W J, et al. Mixed potential gas phase sensor using YSZ solid electrolyte and spinel-type oxides AMn2O4(A=Co, Zn and Cd)sensing electrodes[J]. Sensors and Actuators B: Chemical, 2020, 302: 127206.
[29] RAHIM M A, EJIMA H, CHO K L, et al. Coordination-driven multistep assembly of metal-polyphenol films and capsules[J]. Chemistry of Materials, 2014, 26(4): 1645-1653.
[30] KIM S, KIM D S, KANG S M. Reversible layer-by-layer deposition on solid substrates inspired by mussel byssus cuticle[J]. Chemistry, an Asian Journal, 2014, 9(1): 63-66.
[31] GAO J M, MA S S, XU M J, et al. Photo-Fenton superwettable NiFe2O4/TA/PVDF composite membrane for organic pollutant degradation with successively oil-in-water separation[J]. Chemosphere, 2022, 286: 131705.
[32] WU J D, HOU Z Q, YU Z X, et al. Facile preparation of metal-polyphenol coordination complex coated PVDF membrane for oil/water emulsion separation[J]. Separation and Purification Technology, 2021, 258: 118022.
[33] HU J X, ZHAN Y Q, ZHANG G Y, et al. Durable and super-hydrophilic/underwater super-oleophobic two-dimensional MXene composite lamellar membrane with photocatalytic self-cleaning property for efficient oil/water separation in harsh environments[J]. Journal of Membrane Science, 2021, 637: 119627.
[34] 高杨, 王胜, 吕丽荣, 等. NiAl2O4催化燃烧丙烷性能研究[J]. 应用化工, 2021, 50(1): 15-18, 22.
[35] VENKATARAMANA C, BOTSA S M, SHYAMALA P, et al. Photocatalytic degradation of polyethylene plastics by NiAl2O4 spinels-synthesis and characterization[J]. Chemosphere, 2021, 265: 129021.
[36] RAGUPATHI C, VIJAYA J J, KENNEDY L J. Preparation, characterization and catalytic properties of nickel aluminate nanoparticles: a comparison between conventional and microwave method[J]. Journal of Saudi Chemical Society, 2017, 21: S231-S239.
[37] WENZEL R N. Surface roughness and contact angle[J]. The Journal of Physical and Colloid Chemistry, 1949, 53(9): 1466-1467.
(责任编辑:谭晓荷)