[1]何小波,丁露,银凤翔,等.高熵合金在电催化氧还原反应中的应用及发展[J].常州大学学报(自然科学版),2024,36(01):27-38.[doi:10.3969/j.issn.2095-0411.2024.01.004]
 HE Xiaobo,DING Lu,YIN Fengxiang,et al.Applications and developments of high-entropy alloys toward electrocatalytic oxygen reduction reaction[J].Journal of Changzhou University(Natural Science Edition),2024,36(01):27-38.[doi:10.3969/j.issn.2095-0411.2024.01.004]
点击复制

高熵合金在电催化氧还原反应中的应用及发展()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第36卷
期数:
2024年01期
页码:
27-38
栏目:
化学化工
出版日期:
2024-01-28

文章信息/Info

Title:
Applications and developments of high-entropy alloys toward electrocatalytic oxygen reduction reaction
文章编号:
2095-0411(2024)01-0027-12
作者:
何小波12丁露2银凤翔12李国儒12
1.江苏省绿色催化材料与技术重点实验室常州大学, 江苏 常州 213164; 2.常州大学 石油化工学院, 江苏 常州 213164
Author(s):
HE Xiaobo12 DING Lu2 YIN Fengxiang12 LI Guoru12
1.Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology,Changzhou University,Changzhou 213164,China; 2.School of Petrochemical Engineering,Changzhou University,Changzhou 213164,China
关键词:
催化剂 电催化 高熵合金 氧还原反应
Keywords:
catalyst electrocatalysis high-entropy alloy oxygen reduction reaction
分类号:
TQ 15
DOI:
10.3969/j.issn.2095-0411.2024.01.004
文献标志码:
A
摘要:
开发用于氧气还原反应(ORR)的高效催化剂是提高燃料电池和金属-空气电池性能的关键。然而,ORR是动力学缓慢反应,存在着很高的过电势,从而降低了燃料电池和金属-空气电池的能量转换效率。高熵合金是由5种或5种以上金属元素等(近)物质的量比形成的一种新型合金材料。凭借其独特的组分与结构优势,高熵合金能够高效加速ORR、降低ORR过电势,表现出对ORR的显著催化作用。文章主要综述了高熵合金的结构、性能特点、制备方法以及在催化ORR方面的应用,并提出了挑战和发展展望。
Abstract:
The development of highly efficient catalysts for oxygen reduction reaction(ORR)is the key to improve the performance of fuel cells and metal-air batteries. However, ORR is a kinetic slow reaction with high overpotential, which limits the energy conversion efficiency of fuel cells and metal-air batteries. High-entropy alloy is a new kind of alloy, which is consisted of five or more metal elements with(nearly)equimolar ratios. With unique composition and structural advantages, high-entropy alloy can effectively accelerate ORR kinetics and lower overpotential, showing remarkable catalytic performance toward ORR. In this paper, the structures, properties, preparation methods and applications of high entropy alloys in catalytic ORR were reviewed, and the challenges and development perspectives were proposed.

参考文献/References:

[1] YANG M Y, SHANG C Q, LI F F, et al. Synergistic electronic and morphological modulation on ternary Co1-xVxP nanoneedle arrays for hydrogen evolution reaction with large current density[J]. Science China Materials, 2021, 64(4): 880-891.
[2] ZHANG J J, ZHANG C H, WANG Z Y, et al. Synergistic interlayer and defect engineering in VS2 nanosheets toward efficient electrocatalytic hydrogen evolution reaction[J]. Small, 2018, 14(9): 1703098.
[3] HU J, CAO L J, WANG Z Y, et al. Hollow high-entropy metal organic framework derived nanocomposite as efficient electrocatalyst for oxygen reduction reaction[J]. Composites Communications, 2021, 27: 100866.
[4] ZHANG H Q, YAN X M, GAO L, et al. Novel triple tertiary amine polymer-based hydrogen bond network inducing highly efficient proton-conducting channels of amphoteric membranes for high-performance vanadium redox flow battery[J]. ACS Applied Materials & Interfaces, 2019, 11(5): 5003-5014.
[5] ZHAO K N, LI X A, SU D. High-entropy alloy nanocatalysts for electrocatalysis[J]. Acta Physico Chimica Sinica, 2020: 2009077.
[6] 王艳红, 何小波, 银凤翔, 等. 电催化氧气析出贵金属催化剂的研究进展[J]. 新型工业化, 2016, 6(12): 1-8.
[7] QIN Y C, WANG F Q, WANG X M, et al. Noble metal-based high-entropy alloys as advanced electrocatalysts for energy conversion[J]. Rare Metals, 2021, 40(9): 2354-2368.
[8] LI M, BI X X, WANG R Y, et al. Relating catalysis between fuel cell and metal-air batteries[J]. Matter, 2020, 2(1): 32-49.
[9] CHEN T W, ANUSHYA G, CHEN S M, et al. Recent advances in nanoscale based electrocatalysts for metal-air battery, fuel cell and water-splitting applications: an overview[J]. Materials, 2022, 15(2): 458.
[10] JIANG K, ZHAO J J, WANG H T. Catalyst design for electrochemical oxygen reduction toward hydrogen peroxide[J]. Advanced Functional Materials, 2020, 30(35): 2003321.
[11] LEI W, XIAO J L, LIU H P, et al. Tungsten disulfide: synthesis and applications in electrochemical energy storage and conversion[J]. Tungsten, 2020, 2(3): 217-239.
[12] LIU M L, ZHAO Z P, DUAN X F, et al. Nanoscale structure design for high-performance Pt-based ORR catalysts[J]. Advanced Materials, 2019, 31(6): 1802234.
[13] WANG A L, ZHU L J, YUN Q B, et al. Bromide ions triggered synthesis of noble metal-based intermetallic nanocrystals[J]. Small, 2020, 16(40): 2003782.
[14] SATHIYAMOORTHI P, KIM H S. High-entropy alloys with heterogeneous microstructure: processing and mechanical properties[J]. Progress in Materials Science, 2022, 123: 100709.
[15] LI W D, XIE D, LI D Y, et al. Mechanical behavior of high-entropy alloys[J]. Progress in Materials Science, 2021, 118: 100777.
[16] 吴长军, 熊伟, 周琛, 等. 退火温度对共晶和单相Al-Co-Cr-Fe-Ni 高熵合金显微组织及硬度的影响[J].常州大学学报(自然科学版), 2021, 33(3): 1-8.
[17] LI S Y, TANG X W, JIA H L, et al. Nanoporous high-entropy alloys with low Pt loadings for high-performance electrochemical oxygen reduction[J]. Journal of Catalysis, 2020, 383: 164-171.
[18] LÖFFLER T, SAVAN A, MEYER H, et al. Design of complex solid-solution electrocatalysts by correlating configuration, adsorption energy distribution patterns, and activity curves[J]. Angewandte Chemie International Edition, 2020, 59(14): 5844-5850.
[19] YAO Y G, HUANG Z N, LI T Y, et al. High-throughput, combinatorial synthesis of multimetallic nanoclusters[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(12): 6316-6322.
[20] PEDERSEN J K, CLAUSEN C M, KRYSIAK O A, et al. Bayesian optimization of high-entropy alloy compositions for electrocatalytic oxygen reduction[J]. Angewandte Chemie International Edition, 2021, 60(45): 24144-24152.
[21] LI H D, LAI J P, LI Z J, et al. Multi-sites electrocatalysis in high-entropy alloys[J]. Advanced Functional Materials, 2021, 31(47): 2106715.
[22] QIU H J, FANG G, WEN Y R, et al. Nanoporous high-entropy alloys for highly stable and efficient catalysts[J]. Journal of Materials Chemistry A, 2019, 7(11): 6499-6506.
[23] LIU H, QIN H Y, KANG J L, et al. A freestanding nanoporous NiCoFeMoMn high-entropy alloy as an efficient electrocatalyst for rapid water splitting[J]. Chemical Engineering Journal, 2022, 435: 134898.
[24] LU Y, HUANG K, CAO X, et al. Atomically dispersed intrinsic hollow sites of M-M1-M(M1 = Pt, Ir; M = Fe, Co, Ni, Cu, Pt, Ir)on FeCoNiCuPtIr nanocrystals enabling rapid water redox[J]. Advanced Functional Materials, 2022, 32(19): 2110645.
[25] YAO Y G, DONG Q, BROZENA A, et al. High-entropy nanoparticles: synthesis-structure-property relationships and data-driven discovery[J]. Science, 2022, 376(6589): eabn3103.
[26] LI K, CHEN W. Recent progress in high-entropy alloys for catalysts: synthesis, applications, and prospects[J]. Materials Today Energy, 2021, 20: 100638.
[27] 鲁一荻, 张骁勇, 侯硕, 等. 高熵合金的发展及工业应用展望[J]. 稀有金属材料与工程, 2021, 50(1): 333-341.
[28] POPESCU G, GHIBAN B, POPESCU C A, et al. New TiZrNbTaFe high entropy alloy used for medical applications[J]. IOP Conference Series: Materials Science and Engineering, 2018, 400: 022049.
[29] GUO S, LIU C T. Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase[J]. Progress in Natural Science: Materials International, 2011, 21(6): 433-446.
[30] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303.
[31] 周航, 杨少锋, 杨亚楠, 等. 高熵合金的研究进展及发展趋势[J]. 热加工工艺, 2018, 47(18): 5-9.
[32] XIN Y, LI S H, QIAN Y Y, et al. High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities[J]. ACS Catalysis, 2020, 10(19): 11280-11306.
[33] MA Z H, ZHAI Q, WANG K L, et al. Fabrication of Fe-based metallic glass reinforced FeCoNiCrMn high-entropy alloy through additive manufacturing: mechanical property enhancement and corrosion resistance improvement[J]. Journal of Materials Research and Technology, 2022, 16: 899-911.
[34] LIU L Y, ZHANG Y, HAN J H, et al. Nanoprecipitate-strengthened high-entropy alloys[J]. Advanced Science, 2021, 8(23): 2100870.
[35] PEDERSEN J K, BATCHELOR T A A, BAGGER A, et al. High-entropy alloys as catalysts for the CO2 and CO reduction reactions[J]. ACS Catalysis, 2020, 10(3): 2169-2176.
[36] IPADEOLA A K, LEBECHI A K, GAOLATLHE L, et al. Porous high-entropy alloys as efficient electrocatalysts for water-splitting reactions[J]. Electrochemistry Communications, 2022, 136: 107207.
[37] ANG A S M, MURTY B S, YEH J W, et al. High entropy alloy and bulk metallic glass coatings[J]. Journal of Thermal Spray Technology, 2022, 31(4): 920-922.
[38] WANG L, ZENG Z H, GAO W P, et al. Tunable intrinsic strain in two-dimensional transition metal electrocatalysts[J]. Science, 2019, 363(6429): 870-874.
[39] LI J R, SHARMA S, WEI K C, et al. Anisotropic strain tuning of L10 ternary nanoparticles for oxygen reduction[J]. Journal of the American Chemical Society, 2020, 142(45): 19209-19216.
[40] LUO M C, GUO S J. Strain-controlled electrocatalysis on multimetallic nanomaterials[J]. Nature Reviews Materials, 2017, 2: 17059.
[41] XIA Z H, GUO S J. Strain engineering of metal-based nanomaterials for energy electrocatalysis[J]. Chemical Society Reviews, 2019, 48(12): 3265-3278.
[42] AMIRI A, SHAHBAZIAN-YASSAR R. Recent progress of high-entropy materials for energy storage and conversion[J]. Journal of Materials Chemistry A, 2021, 9(2): 782-823.
[43] GEORGE E P, RAABE D, RITCHIE R O. High-entropy alloys[J]. Nature Reviews Materials, 2019, 4(8): 515-534.
[44] YAO Y G, HUANG Z N, XIE P F, et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles[J]. Science, 2018, 359(6383): 1489-1494.
[45] GAO S J, HAO S Y, HUANG Z N, et al. Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis[J]. Nature Communications, 2020, 11: 2016.
[46] XU H D, ZHANG Z H, LIU J X, et al. Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports[J]. Nature Communications, 2020, 11: 3908.
[47] BROGE N L N, BONDESGAARD M, SØNDERGAARD-PEDERSEN F, et al. Autocatalytic formation of high-entropy alloy nanoparticles[J]. Angewandte Chemie International Edition, 2020, 59(49): 21920-21924.
[48] CUI X D, ZHANG B L, ZENG C Y, et al. Electrocatalytic activity of high-entropy alloys toward oxygen evolution reaction[J]. MRS Communications, 2018, 8(3): 1230-1235.
[49] WU H, LU Q, ZHANG J F, et al. Thermal shock-activated spontaneous growing of nanosheets for overall water splitting[J]. Nano-Micro Letters, 2020, 12(1): 162.
[50] REYES-MORALES J, VANDERKWAAK B T, DICK J E. Enabling practical nanoparticle electrodeposition from aqueous nanodroplets[J]. Nanoscale, 2022, 14(7): 2750-2757.
[51] GLASSCOTT M W, DICK J E. Electrodeposition in aqueous nanoreactors[J]. Current Opinion in Electrochemistry, 2021, 25: 100637.
[52] GLASSCOTT M W, PENDERGAST A D, GOINES S, et al. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis[J]. Nature Communications, 2019, 10: 2650.
[53] WONG A, LIU Q, GRIFFIN S, et al. Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports[J]. Science, 2017, 358(6369): 1427-1430.
[54] SUN Y F, DAI S. High-entropy materials for catalysis: a new frontier[J]. Science Advances, 2021, 7(20): eabg1600.
[55] BONDESGAARD M, BROGE N L N, MAMAKHEL A, et al. General solvothermal synthesis method for complete solubility range bimetallic and high-entropy alloy nanocatalysts[J]. Advanced Functional Materials, 2019, 29(50): 1905933.
[56] XIE P F, YAO Y G, HUANG Z N, et al. Highly efficient decomposition of ammonia using high-entropy alloy catalysts[J]. Nature Communications, 2019, 10(1): 4011.
[57] LIU M M, ZHANG Z H, OKEJIRI F, et al. Entropy-maximized synthesis of multimetallic nanoparticle catalysts via a ultrasonication-assisted wet chemistry method under ambient conditions[J]. Advanced Materials Interfaces, 2019, 6(7): 1900015.
[58] ZHANG Y Q, WANG D D, WANG S Y. High-entropy alloys for electrocatalysis: design, characterization, and applications[J]. Small, 2022, 18(7): 2104339.
[59] 方刚. 纳米多孔高熵合金的脱合金法制备及其电催化性能的研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
[60] ZHAO Z P, CHEN C L, LIU Z Y, et al. Pt-based nanocrystal for electrocatalytic oxygen reduction[J]. Advanced Materials, 2019, 31(31): 1808115.
[61] HOLEWINSKI A, LINIC S. Elementary mechanisms in electrocatalysis: revisiting the ORR tafel slope[J]. Journal of the Electrochemical Society, 2012, 159(11): H864-H870.
[62] LIU J L, ZHANG T R, WATERHOUSE G I N. Complex alloy nanostructures as advanced catalysts for oxygen electrocatalysis: from materials design to applications[J]. Journal of Materials Chemistry A, 2020, 8(44): 23142-23161.
[63] 金泽宇. 基于低贵金属含量纳米多孔高熵合金的电催化性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
[64] TSAI M H, YEH J W. High-entropy alloys: a critical review[J]. Materials Research Letters, 2014, 2(3): 107-123.
[65] ALANEME K K, BODUNRIN M O, OKE S R. Processing, alloy composition and phase transition effect on the mechanical and corrosion properties of high entropy alloys: a review[J]. Journal of Materials Research and Technology, 2016, 5(4): 384-393.
[66] WIDOM M. Modeling the structure and thermodynamics of high-entropy alloys[J]. Journal of Materials Research, 2018, 33(19): 2881-2898.
[67] BATCHELOR T A A, PEDERSEN J K, WINTHER S H, et al. High-entropy alloys as a discovery platform for electrocatalysis[J]. Joule, 2019, 3(3): 834-845.
[68] WANG S W, XIN H L. Predicting catalytic activity of high-entropy alloys for electrocatalysis[J]. Chem, 2019, 5(3): 502-504.
[69] LI H N, ZHU H, SHEN Q K, et al. A novel synergistic confinement strategy for controlled synthesis of high-entropy alloy electrocatalysts[J]. Chemical Communications, 2021, 57(21): 2637-2640.
[70] LÖFFLER T, MEYER H, SAVAN A, et al. Discovery of a multinary noble metal-free oxygen reduction catalyst[J]. Advanced Energy Materials, 2018, 8(34): 1802269.
[71] FANG G, GAO J J, LYU J, et al. Multi-component nanoporous alloy/(oxy)hydroxide for bifunctional oxygen electrocatalysis and rechargeable Zn-air batteries[J]. Applied Catalysis B: Environmental, 2020, 268: 118431.

相似文献/References:

[1]朱国彪,奚 旺.对溴甲苯的合成工艺[J].常州大学学报(自然科学版),2014,(02):4.[doi:10.3969/j.issn.2095-0411.2014.02.002]
 ZHU Guo-biao,XI Wang.A Study on the Synthesis of 4Bromotoluene[J].Journal of Changzhou University(Natural Science Edition),2014,(01):4.[doi:10.3969/j.issn.2095-0411.2014.02.002]
[2]李 工,邓中林,周书喜,等.强酸性介孔催化剂研究进展[J].常州大学学报(自然科学版),2009,(02):73.
 LI Gong,DENG Zhong -lin,ZHO U Shu -xi,et al.Research Progress of Strongly Acidic Mesoporous Materials[J].Journal of Changzhou University(Natural Science Edition),2009,(01):73.
[3]张 跃,陈英斌,刘建武,等.CO2 加氢制备二甲醚研究进展[J].常州大学学报(自然科学版),2009,(03):68.
 ZHANG Yue,CHEN Ying -bin,LIU Jian -w u,et al.Progress in Dimethyl Ether Synthesis from Carbon Dioxide and Hydrogen[J].Journal of Changzhou University(Natural Science Edition),2009,(01):68.
[4]孟 启,朱国彪,何明阳,等.载Sn (Ⅱ)沸石催化合成偏苯三酸三辛酯[J].常州大学学报(自然科学版),2002,(02):8.
 MENG Qi,ZHU Guo -biao,HE Ming -y ang,et al.Synthesis of Trioctyl 1 , 2 , 4 -benzenecarboxylate Using Sn(Ⅱ)/Zeolite as Catalyst[J].Journal of Changzhou University(Natural Science Edition),2002,(01):8.
[5]张卫红,宋国强,张 灏.二环己基二甲氧基硅烷的合成[J].常州大学学报(自然科学版),2001,(02):17.
 ZHANG Wei -hong,SONG Guo -qiang,ZHANG Hao.Synthesis of Dicyclohexy ldimethoxysi lane[J].Journal of Changzhou University(Natural Science Edition),2001,(01):17.

备注/Memo

备注/Memo:
收稿日期: 2023-03-29。
基金项目: 国家自然科学基金资助项目(22078027); 常州市科技计划应用基础研究计划资助项目(CJ20220253)。
作者简介: 何小波(1983—), 男, 江苏常州人, 博士, 副研究员。 通信联系人: 银凤翔(1975—), E-mail: yinfx@cczu.edu.cn
更新日期/Last Update: 1900-01-01