参考文献/References:
[1] YANG M Y, SHANG C Q, LI F F, et al. Synergistic electronic and morphological modulation on ternary Co1-xVxP nanoneedle arrays for hydrogen evolution reaction with large current density[J]. Science China Materials, 2021, 64(4): 880-891.
[2] ZHANG J J, ZHANG C H, WANG Z Y, et al. Synergistic interlayer and defect engineering in VS2 nanosheets toward efficient electrocatalytic hydrogen evolution reaction[J]. Small, 2018, 14(9): 1703098.
[3] HU J, CAO L J, WANG Z Y, et al. Hollow high-entropy metal organic framework derived nanocomposite as efficient electrocatalyst for oxygen reduction reaction[J]. Composites Communications, 2021, 27: 100866.
[4] ZHANG H Q, YAN X M, GAO L, et al. Novel triple tertiary amine polymer-based hydrogen bond network inducing highly efficient proton-conducting channels of amphoteric membranes for high-performance vanadium redox flow battery[J]. ACS Applied Materials & Interfaces, 2019, 11(5): 5003-5014.
[5] ZHAO K N, LI X A, SU D. High-entropy alloy nanocatalysts for electrocatalysis[J]. Acta Physico Chimica Sinica, 2020: 2009077.
[6] 王艳红, 何小波, 银凤翔, 等. 电催化氧气析出贵金属催化剂的研究进展[J]. 新型工业化, 2016, 6(12): 1-8.
[7] QIN Y C, WANG F Q, WANG X M, et al. Noble metal-based high-entropy alloys as advanced electrocatalysts for energy conversion[J]. Rare Metals, 2021, 40(9): 2354-2368.
[8] LI M, BI X X, WANG R Y, et al. Relating catalysis between fuel cell and metal-air batteries[J]. Matter, 2020, 2(1): 32-49.
[9] CHEN T W, ANUSHYA G, CHEN S M, et al. Recent advances in nanoscale based electrocatalysts for metal-air battery, fuel cell and water-splitting applications: an overview[J]. Materials, 2022, 15(2): 458.
[10] JIANG K, ZHAO J J, WANG H T. Catalyst design for electrochemical oxygen reduction toward hydrogen peroxide[J]. Advanced Functional Materials, 2020, 30(35): 2003321.
[11] LEI W, XIAO J L, LIU H P, et al. Tungsten disulfide: synthesis and applications in electrochemical energy storage and conversion[J]. Tungsten, 2020, 2(3): 217-239.
[12] LIU M L, ZHAO Z P, DUAN X F, et al. Nanoscale structure design for high-performance Pt-based ORR catalysts[J]. Advanced Materials, 2019, 31(6): 1802234.
[13] WANG A L, ZHU L J, YUN Q B, et al. Bromide ions triggered synthesis of noble metal-based intermetallic nanocrystals[J]. Small, 2020, 16(40): 2003782.
[14] SATHIYAMOORTHI P, KIM H S. High-entropy alloys with heterogeneous microstructure: processing and mechanical properties[J]. Progress in Materials Science, 2022, 123: 100709.
[15] LI W D, XIE D, LI D Y, et al. Mechanical behavior of high-entropy alloys[J]. Progress in Materials Science, 2021, 118: 100777.
[16] 吴长军, 熊伟, 周琛, 等. 退火温度对共晶和单相Al-Co-Cr-Fe-Ni 高熵合金显微组织及硬度的影响[J].常州大学学报(自然科学版), 2021, 33(3): 1-8.
[17] LI S Y, TANG X W, JIA H L, et al. Nanoporous high-entropy alloys with low Pt loadings for high-performance electrochemical oxygen reduction[J]. Journal of Catalysis, 2020, 383: 164-171.
[18] LÖFFLER T, SAVAN A, MEYER H, et al. Design of complex solid-solution electrocatalysts by correlating configuration, adsorption energy distribution patterns, and activity curves[J]. Angewandte Chemie International Edition, 2020, 59(14): 5844-5850.
[19] YAO Y G, HUANG Z N, LI T Y, et al. High-throughput, combinatorial synthesis of multimetallic nanoclusters[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(12): 6316-6322.
[20] PEDERSEN J K, CLAUSEN C M, KRYSIAK O A, et al. Bayesian optimization of high-entropy alloy compositions for electrocatalytic oxygen reduction[J]. Angewandte Chemie International Edition, 2021, 60(45): 24144-24152.
[21] LI H D, LAI J P, LI Z J, et al. Multi-sites electrocatalysis in high-entropy alloys[J]. Advanced Functional Materials, 2021, 31(47): 2106715.
[22] QIU H J, FANG G, WEN Y R, et al. Nanoporous high-entropy alloys for highly stable and efficient catalysts[J]. Journal of Materials Chemistry A, 2019, 7(11): 6499-6506.
[23] LIU H, QIN H Y, KANG J L, et al. A freestanding nanoporous NiCoFeMoMn high-entropy alloy as an efficient electrocatalyst for rapid water splitting[J]. Chemical Engineering Journal, 2022, 435: 134898.
[24] LU Y, HUANG K, CAO X, et al. Atomically dispersed intrinsic hollow sites of M-M1-M(M1 = Pt, Ir; M = Fe, Co, Ni, Cu, Pt, Ir)on FeCoNiCuPtIr nanocrystals enabling rapid water redox[J]. Advanced Functional Materials, 2022, 32(19): 2110645.
[25] YAO Y G, DONG Q, BROZENA A, et al. High-entropy nanoparticles: synthesis-structure-property relationships and data-driven discovery[J]. Science, 2022, 376(6589): eabn3103.
[26] LI K, CHEN W. Recent progress in high-entropy alloys for catalysts: synthesis, applications, and prospects[J]. Materials Today Energy, 2021, 20: 100638.
[27] 鲁一荻, 张骁勇, 侯硕, 等. 高熵合金的发展及工业应用展望[J]. 稀有金属材料与工程, 2021, 50(1): 333-341.
[28] POPESCU G, GHIBAN B, POPESCU C A, et al. New TiZrNbTaFe high entropy alloy used for medical applications[J]. IOP Conference Series: Materials Science and Engineering, 2018, 400: 022049.
[29] GUO S, LIU C T. Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase[J]. Progress in Natural Science: Materials International, 2011, 21(6): 433-446.
[30] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303.
[31] 周航, 杨少锋, 杨亚楠, 等. 高熵合金的研究进展及发展趋势[J]. 热加工工艺, 2018, 47(18): 5-9.
[32] XIN Y, LI S H, QIAN Y Y, et al. High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities[J]. ACS Catalysis, 2020, 10(19): 11280-11306.
[33] MA Z H, ZHAI Q, WANG K L, et al. Fabrication of Fe-based metallic glass reinforced FeCoNiCrMn high-entropy alloy through additive manufacturing: mechanical property enhancement and corrosion resistance improvement[J]. Journal of Materials Research and Technology, 2022, 16: 899-911.
[34] LIU L Y, ZHANG Y, HAN J H, et al. Nanoprecipitate-strengthened high-entropy alloys[J]. Advanced Science, 2021, 8(23): 2100870.
[35] PEDERSEN J K, BATCHELOR T A A, BAGGER A, et al. High-entropy alloys as catalysts for the CO2 and CO reduction reactions[J]. ACS Catalysis, 2020, 10(3): 2169-2176.
[36] IPADEOLA A K, LEBECHI A K, GAOLATLHE L, et al. Porous high-entropy alloys as efficient electrocatalysts for water-splitting reactions[J]. Electrochemistry Communications, 2022, 136: 107207.
[37] ANG A S M, MURTY B S, YEH J W, et al. High entropy alloy and bulk metallic glass coatings[J]. Journal of Thermal Spray Technology, 2022, 31(4): 920-922.
[38] WANG L, ZENG Z H, GAO W P, et al. Tunable intrinsic strain in two-dimensional transition metal electrocatalysts[J]. Science, 2019, 363(6429): 870-874.
[39] LI J R, SHARMA S, WEI K C, et al. Anisotropic strain tuning of L10 ternary nanoparticles for oxygen reduction[J]. Journal of the American Chemical Society, 2020, 142(45): 19209-19216.
[40] LUO M C, GUO S J. Strain-controlled electrocatalysis on multimetallic nanomaterials[J]. Nature Reviews Materials, 2017, 2: 17059.
[41] XIA Z H, GUO S J. Strain engineering of metal-based nanomaterials for energy electrocatalysis[J]. Chemical Society Reviews, 2019, 48(12): 3265-3278.
[42] AMIRI A, SHAHBAZIAN-YASSAR R. Recent progress of high-entropy materials for energy storage and conversion[J]. Journal of Materials Chemistry A, 2021, 9(2): 782-823.
[43] GEORGE E P, RAABE D, RITCHIE R O. High-entropy alloys[J]. Nature Reviews Materials, 2019, 4(8): 515-534.
[44] YAO Y G, HUANG Z N, XIE P F, et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles[J]. Science, 2018, 359(6383): 1489-1494.
[45] GAO S J, HAO S Y, HUANG Z N, et al. Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis[J]. Nature Communications, 2020, 11: 2016.
[46] XU H D, ZHANG Z H, LIU J X, et al. Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports[J]. Nature Communications, 2020, 11: 3908.
[47] BROGE N L N, BONDESGAARD M, SØNDERGAARD-PEDERSEN F, et al. Autocatalytic formation of high-entropy alloy nanoparticles[J]. Angewandte Chemie International Edition, 2020, 59(49): 21920-21924.
[48] CUI X D, ZHANG B L, ZENG C Y, et al. Electrocatalytic activity of high-entropy alloys toward oxygen evolution reaction[J]. MRS Communications, 2018, 8(3): 1230-1235.
[49] WU H, LU Q, ZHANG J F, et al. Thermal shock-activated spontaneous growing of nanosheets for overall water splitting[J]. Nano-Micro Letters, 2020, 12(1): 162.
[50] REYES-MORALES J, VANDERKWAAK B T, DICK J E. Enabling practical nanoparticle electrodeposition from aqueous nanodroplets[J]. Nanoscale, 2022, 14(7): 2750-2757.
[51] GLASSCOTT M W, DICK J E. Electrodeposition in aqueous nanoreactors[J]. Current Opinion in Electrochemistry, 2021, 25: 100637.
[52] GLASSCOTT M W, PENDERGAST A D, GOINES S, et al. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis[J]. Nature Communications, 2019, 10: 2650.
[53] WONG A, LIU Q, GRIFFIN S, et al. Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports[J]. Science, 2017, 358(6369): 1427-1430.
[54] SUN Y F, DAI S. High-entropy materials for catalysis: a new frontier[J]. Science Advances, 2021, 7(20): eabg1600.
[55] BONDESGAARD M, BROGE N L N, MAMAKHEL A, et al. General solvothermal synthesis method for complete solubility range bimetallic and high-entropy alloy nanocatalysts[J]. Advanced Functional Materials, 2019, 29(50): 1905933.
[56] XIE P F, YAO Y G, HUANG Z N, et al. Highly efficient decomposition of ammonia using high-entropy alloy catalysts[J]. Nature Communications, 2019, 10(1): 4011.
[57] LIU M M, ZHANG Z H, OKEJIRI F, et al. Entropy-maximized synthesis of multimetallic nanoparticle catalysts via a ultrasonication-assisted wet chemistry method under ambient conditions[J]. Advanced Materials Interfaces, 2019, 6(7): 1900015.
[58] ZHANG Y Q, WANG D D, WANG S Y. High-entropy alloys for electrocatalysis: design, characterization, and applications[J]. Small, 2022, 18(7): 2104339.
[59] 方刚. 纳米多孔高熵合金的脱合金法制备及其电催化性能的研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
[60] ZHAO Z P, CHEN C L, LIU Z Y, et al. Pt-based nanocrystal for electrocatalytic oxygen reduction[J]. Advanced Materials, 2019, 31(31): 1808115.
[61] HOLEWINSKI A, LINIC S. Elementary mechanisms in electrocatalysis: revisiting the ORR tafel slope[J]. Journal of the Electrochemical Society, 2012, 159(11): H864-H870.
[62] LIU J L, ZHANG T R, WATERHOUSE G I N. Complex alloy nanostructures as advanced catalysts for oxygen electrocatalysis: from materials design to applications[J]. Journal of Materials Chemistry A, 2020, 8(44): 23142-23161.
[63] 金泽宇. 基于低贵金属含量纳米多孔高熵合金的电催化性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
[64] TSAI M H, YEH J W. High-entropy alloys: a critical review[J]. Materials Research Letters, 2014, 2(3): 107-123.
[65] ALANEME K K, BODUNRIN M O, OKE S R. Processing, alloy composition and phase transition effect on the mechanical and corrosion properties of high entropy alloys: a review[J]. Journal of Materials Research and Technology, 2016, 5(4): 384-393.
[66] WIDOM M. Modeling the structure and thermodynamics of high-entropy alloys[J]. Journal of Materials Research, 2018, 33(19): 2881-2898.
[67] BATCHELOR T A A, PEDERSEN J K, WINTHER S H, et al. High-entropy alloys as a discovery platform for electrocatalysis[J]. Joule, 2019, 3(3): 834-845.
[68] WANG S W, XIN H L. Predicting catalytic activity of high-entropy alloys for electrocatalysis[J]. Chem, 2019, 5(3): 502-504.
[69] LI H N, ZHU H, SHEN Q K, et al. A novel synergistic confinement strategy for controlled synthesis of high-entropy alloy electrocatalysts[J]. Chemical Communications, 2021, 57(21): 2637-2640.
[70] LÖFFLER T, MEYER H, SAVAN A, et al. Discovery of a multinary noble metal-free oxygen reduction catalyst[J]. Advanced Energy Materials, 2018, 8(34): 1802269.
[71] FANG G, GAO J J, LYU J, et al. Multi-component nanoporous alloy/(oxy)hydroxide for bifunctional oxygen electrocatalysis and rechargeable Zn-air batteries[J]. Applied Catalysis B: Environmental, 2020, 268: 118431.