[1]涂理达,周慧平,姚臻晖,等.磷肥对镉铅铜锌复合污染土壤的钝化修复[J].常州大学学报(自然科学版),2024,36(01):49-59.[doi:10.3969/j.issn.2095-0411.2024.01.006]
 TU Lida,ZHOU Huiping,YAO Zhenhui,et al.Passivation remediation of cadmium-lead-copper-zinc composite polluted soil by phosphate fertilizer[J].Journal of Changzhou University(Natural Science Edition),2024,36(01):49-59.[doi:10.3969/j.issn.2095-0411.2024.01.006]
点击复制

磷肥对镉铅铜锌复合污染土壤的钝化修复()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第36卷
期数:
2024年01期
页码:
49-59
栏目:
环境科学与工程
出版日期:
2024-01-28

文章信息/Info

Title:
Passivation remediation of cadmium-lead-copper-zinc composite polluted soil by phosphate fertilizer
文章编号:
2095-0411(2024)01-0049-11
作者:
涂理达1周慧平12姚臻晖1庞中正1
1.常州大学 环境科学与工程学院, 江苏 常州 213164; 2.南京环境科学研究所 生态环境部, 江苏 南京 210042
Author(s):
TU Lida1 ZHOU Huiping12 YAO Zhenhui1 PANG Zhongzheng1
1.School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; 2.Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing 210042, China
关键词:
土壤 复合重金属 磷肥 钝化特征
Keywords:
soil complex heavy metals phosphate fertilizer passivation characteristics
分类号:
X 53
DOI:
10.3969/j.issn.2095-0411.2024.01.006
文献标志码:
A
摘要:
为探寻不同磷肥及施用量对复合重金属污染土壤的钝化效果,选取安徽铜陵某矿区周边重金属复合污染的水稻土进行室内培养试验,研究了在磷酸氢二铵(DAP)、磷酸二氢钾(MPP)、磷酸三钙(TCP)和钙镁磷肥(CMP)这4种磷肥和5种施磷量条件下,土壤重金属镉(Cd)、铅(Pb)、铜(Cu)、锌(Zn)钝化特征随时间的变化。结果表明,添加4种磷肥均使土壤pH出现不同程度的升高,升高幅度从大到小依次为DAP,CMP,TCP,MPP。4种磷肥均能一定程度上钝化土壤中的Cd,Pb,且随着时间和施磷量的增加,整体钝化效果增加。在12周,施磷量为8 g/kg时,DAP,MPP,TCP和CMP对Cd的钝化效率分别达到了42.77%,41.74%,30.37%,28.31%,对Pb的钝化效率分别达到了48.55%,60.57%,37.58%,35.03%,磷肥对Cd,Pb的钝化效果主要是弱酸提取态和可还原态向残渣态转化。水溶性磷肥在复合污染土壤中对Cu,Zn具有活化风险,而枸溶性磷肥在相同施磷水平上对复合污染土壤中Pb,Cd的钝化效果相比于水溶性磷肥较差。因此磷肥适用于Pb,Cd污染土壤修复,且稳定性较好,用于修复Cu,Zn污染土壤效果较差。
Abstract:
In order to explore the passivation effect of different phosphate fertilizers and their application amounts on the soil contaminated by heavy metals, the paddy soil contaminated by heavy metals around a mining area in Tongling, Anhui was selected for indoor cultivation experiments. The passivation characteristics of soil heavy metals cadmium(Cd), lead(Pb), copper(Cu), and zinc(Zn)with time changes of 4 kinds of phosphorus fertilizers(diammonium hydrogen phosphate DAP, potassium dihydrogen phosphate MPP, tricalcium phosphate TCP and calcium magnesium phosphate fertilizer CMP)and 5 kinds of phosphorus application rates were studied. The results showed that the four kinds of phosphorus fertilizers increased soil pH to different degrees, and the order of increase was DAP, CMP, TCP, MPP. All four kinds of phosphorus fertilizers can passivate Cd and Pb in soil to a certain extent, and the overall passivation effect increases with the increase of time and phosphorus application amounts. The passivation efficiencies of DAP, MPP, TCP and CMP to Cd reached 42.77%, 41.74%, 30.37% and 28.31%, respectively, and the passivation efficiencies to Pb reached 48.55%, 60.57%, 37.58% and 35.03%, respectively. The passivation effect of phosphate fertilizer on Cd and Pb is mainly the transformation of weak acid extraction state and reducible state to residue state; water-soluble phosphate fertilizers have the risk of activation on Cu and Zn in compound polluted soil, while citric acid-soluble phosphate fertilizers are at the same phosphorus application level. The passivation effect of Pb and Cd in polluted soil is poorer than that of water-soluble phosphate fertilizer. Therefore, phosphate fertilizer is suitable for the remediation of Pb and Cd polluted soil, and has good stability, but the remediation effect of Cu and Zn polluted soil is poor.

参考文献/References:

[1] 国土资源部. 全国土壤污染状况调查公报[J]. 中国环保产业, 2014, 21(5): 10-11.
[2] 曹心德, 魏晓欣, 代革联, 等. 土壤重金属复合污染及其化学钝化修复技术研究进展[J]. 环境工程学报, 2011, 5(7): 1441-1453.
[3] 潘旭鸣, 丁淼, 徐萱, 等. 稻田氮磷流失方式及时间分布研究[J]. 常州大学学报(自然科学版), 2022, 34(4): 35-42.
[4] 丁淑芳, 谢正苗, 吴卫红, 等. 含磷物质原位化学钝化重金属污染土壤的研究进展[J]. 安徽农业科学, 2012, 40(35): 17093-17097.
[5] 李会枝. 不同种类磷肥对水稻-油菜轮作体系作物产量和养分利用的影响[D]. 武汉: 华中农业大学, 2020.
[6] 张青, 王煌平, 孔庆波, 等. 不同生育期施加超细磷矿粉对水稻吸收和转运Pb、Cd的影响[J]. 农业环境科学学报, 2020, 39(1): 45-54.
[7] 周佚群, 梁成华, 杜立宇, 等. 不同施磷水平对土壤中重金属镉的钝化效果评价[J]. 水土保持通报, 2014, 34(6): 68-72.
[8] BASTA N T, MCGOWEN S L. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil[J]. Environmental Pollution, 2004, 127(1): 73-82.
[9] CAO X D, WAHBI A, MA L N, et al. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid[J]. Journal of Hazardous Materials, 2009, 164(2/3): 555-564.
[10] 钱海燕, 王兴祥, 黄国勤, 等. 钙镁磷肥和石灰对受Cu Zn污染的菜园土壤的改良作用[J]. 农业环境科学学报, 2007, 26(1): 235-239.
[11] 姚臻晖, 涂理达, 周慧平, 等. 稻田镉污染原位钝化修复及磷积累与迁移特征[J]. 中国环境科学, 2021, 41(5): 2374-2379.
[12] 施尧. 磷基材料钝化修复重金属Pb、Cu、Zn复合污染土壤[D]. 上海: 上海交通大学, 2011.
[13] 刘甜田, 何滨, 王亚韩, 等. 改进BCR法在活性污泥样品重金属形态分析中的应用[J]. 分析试验室, 2007, 26(S1): 17-20.
[14] 姚静波, 王明新, 齐今笛, 等. 高架道路周边建筑物灰尘重金属污染风险: 以常州市为例[J]. 环境科学, 2017, 38(5): 1807-1816.
[15] DELGADO J, BARBA-BRIOSO C, NIETO J M, et al. Speciation and ecological risk of toxic elements in estuarine sediments affected by multiple anthropogenic contributions[J]. Science of the Total Environment, 2011, 409(19): 3666-3679.
[16] 刘洁, 陈杰, 李顺奇, 等. 几种含磷材料对紫色土铅稳定条件优化及磷淋失环境风险评价[J]. 环境工程学报, 2018, 12(8): 2301-2310.
[17] 施尧, 曹心德, 魏晓欣, 等. 含磷材料钝化修复重金属Pb、Cu、Zn复合污染土壤[J]. 上海交通大学学报(农业科学版), 2011, 29(3): 62-68.
[18] 魏晓欣. 含磷物质钝化修复重金属复合污染土壤[D]. 西安: 西安科技大学, 2010.
[19] 金亮, 周健民, 王火焰, 等. 磷酸氢二铵在酸性土壤中的转化与垂直扩散[J]. 生态与农村环境学报, 2008, 24(3): 45-50.
[20] 李丁, 王济, 宣斌, 等. 不同钝化剂对外源铅在土壤中的钝化效果及粒径分布的影响[J]. 环境工程学报, 2019, 13(12): 2934-2944.
[21] 武晓微, 翟文珺, 高超, 等. 钝化剂对土壤性质及镉生物有效性的影响研究[J]. 农业环境科学学报, 2021, 40(3): 562-569.
[22] 徐珺, 曾敏, 王光军, 等. 2种组配改良剂修复镉砷复合污染稻田土壤的研究[J]. 环境科学学报, 2018, 38(5): 2008-2013.
[23] ZHOU H B, MENG H B, ZHAO L X, et al. Effect of biochar and humic acid on the copper, lead, and cadmium passivation during composting[J]. Bioresource Technology, 2018, 258: 279-286.
[24] 徐芹磊, 陈炎辉, 谢团辉, 等. 铅锌矿区农田土壤重金属污染现状与评价[J]. 环境科学与技术, 2018, 41(2): 176-182.
[25] HANC A, TLUSTOS P, SZAKOVA J, et al. Changes in cadmium mobility during composting and after soil application[J]. Waste Management, 2009, 29(8): 2282-2288.
[26] CHEN M, LI X M, YANG Q, et al. Total concentrations and speciation of heavy metals in municipal sludge from Changsha, Zhuzhou and Xiangtan in middle-south region of China[J]. Journal of Hazardous Materials, 2008, 160(2/3): 324-329.
[27] HUANG G Y, GAO R L, YOU J W, et al. Oxalic acid activated phosphate rock and bone meal to immobilize Cu and Pb in mine soils[J]. Ecotoxicology and Environmental Safety, 2019, 174: 401-407.
[28] KAUSHIK R D, GUPTA V K, SINGH J P. Distribution of zinc, cadmium, and copper forms in soils as influenced by phosphorus application[J]. Arid Soil Research and Rehabilitation, 1993, 7(2): 163-171.
[29] 周世伟, 徐明岗. 磷酸盐修复重金属污染土壤的研究进展[J]. 生态学报, 2007, 27(7): 3043-3050.
[30] 张茜, 徐明岗, 张文菊, 等. 磷酸盐和石灰对污染红壤与黄泥土中重金属铜锌的钝化作用[J]. 生态环境, 2008, 17(3): 1037-1041.
[31] 付煜恒, 张惠灵, 王宇, 等. 磷酸盐对铅镉复合污染土壤的钝化修复研究[J]. 环境工程, 2017, 35(9): 176-180, 163.
[32] CAO X D, MA L Q, RHUE D R, et al. Mechanisms of lead, copper, and zinc retention by phosphate rock[J]. Environmental Pollution, 2004, 131(3): 435-444.
[33] 徐明岗, 刘平, 宋正国, 等. 施肥对污染土壤中重金属行为影响的研究进展[J]. 农业环境科学学报, 2006, 25(S1): 328-333.
[34] 郭亮, 李忠武, 黄斌, 等. 不同施磷量(KH2PO4)作用对Cu、Zn在红壤中的迁移转化[J]. 环境科学, 2014, 35(9): 3546-3552.

相似文献/References:

[1]邵 敏,蔡志强,赵希岳,等.放射性核素60Co 在土壤中吸附和解吸的动力学研究[J].常州大学学报(自然科学版),2006,(03):11.
 SHAO Min,CAI Zhi -Qiang,ZHAO Xi -yue,et al.Kinetic Research on Adsorption and Desorption of Cobalt -60 in Soils[J].Journal of Changzhou University(Natural Science Edition),2006,(01):11.
[2]董炎青,陈 英,陈 勇,等.重铬酸钾-烘箱加热法测定土壤有机碳研究[J].常州大学学报(自然科学版),2019,31(01):15.[doi:10.3969/j.issn.2095-0411.2019.01.003]
 DONG Yanqing,CHEN Ying,CHEN Yong,et al.Study on the Determination of Soil Organic Carbon by Potassium Dichromate-Dryer Heating Method[J].Journal of Changzhou University(Natural Science Edition),2019,31(01):15.[doi:10.3969/j.issn.2095-0411.2019.01.003]

备注/Memo

备注/Memo:
收稿日期: 2023-09-12。
基金项目: 国家重点研发计划资助项目(2016YFD0801106)。
作者简介: 涂理达(1996—), 男, 江西宜春人, 硕士生。 通信联系人: 周慧平(1976—), E-mail: zhouhp@cczu.edu.cn
更新日期/Last Update: 1900-01-01