参考文献/References:
[1] ZHAI G T, MIN X K. Perceptual image quality assessment: a survey[J]. Science China Information Sciences, 2020, 63(11): 211301.
[2] SULTANI W, CHEN C, SHAH M. Real-world anomaly detection in surveillance videos[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6479-6488.
[3] LI W X, MAHADEVAN V, VASCONCELOS N. Anomaly detection and localization in crowded scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(1): 18-32.
[4] LU C W, SHI J P, JIA J Y. Abnormal event detection at 150 FPS in MATLAB[C]//2013 IEEE International Conference on Computer Vision. Sydney: IEEE, 2013: 2720-2727.
[5] SESHADRINATHAN K, SOUNDARARAJAN R, BOVIK A C, et al. Study of subjective and objective quality assessment of video[J]. IEEE Transactions on Image Processing, 2010, 19(6): 1427-1441.
[6] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
[7] SHEIKH H R, BOVIK A C. Image information and visual quality[J]. IEEE Transactions on Image Processing, 2006, 15(2): 430-444.
[8] XUE W F, ZHANG L, MOU X Q, et al. Gradient magnitude similarity deviation: a highly efficient perceptual image quality index[J]. IEEE Transactions on Image Processing, 2014, 23(2): 684-695.
[9] ZHANG L, ZHANG L, MOU X Q, et al. FSIM: a feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8): 2378-2386.
[10] CHEON M, YOON S J, KANG B, et al. Perceptual image quality assessment with transformers[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW). Nashville: IEEE, 2021: 433-442.
[11] DING K Y, LIU Y, ZOU X Y, et al. Locally adaptive structure and texture similarity for image quality assessment[C]//Proceedings of the 29th ACM International Conference on Multimedia. Virtual Event:ACM, 2021: 2483-2491.
[12] DING K Y, MA K D, WANG S Q, et al. Image quality assessment: unifying structure and texture similarity[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(5): 2567-2581.
[13] SU S L, YAN Q S, ZHU Y, et al. Blindly assess image quality in the wild guided by a self-adaptive hyper network[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Seattle: IEEE, 2020: 3664-3673.
[14] ZHU H C, LI L D, WU J J, et al. MetaIQA: deep meta-learning for no-reference image quality assessment[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Seattle: IEEE, 2020: 14131-14140.
[15] GU S Y, BAO J M, CHEN D, et al. GIQA: generated image quality assessment[C]//VEDALDI A, BISCHOF H, BROX T, et al. European Conference on Computer Vision. Cham: Springer, 2020: 369-385.
[16] REN J, XIA F, LIU Y M, et al. Deep video anomaly detection: opportunities and challenges[C]//2021 International Conference on Data Mining Workshops(ICDMW). Auckland: IEEE, 2021: 959-966.
[17] PARK H, NOH J, HAM B. Learning memory-guided normality for anomaly detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Seattle: IEEE, 2020: 14360-14369.
[18] ZAHEER M Z, LEE J H, ASTRID M, et al. Old is gold: redefining the adversarially learned one-class classifier training paradigm[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Seattle: IEEE, 2020: 14171-14181.
[19] ZAHEER M Z, LEE J H, MAHMOOD A, et al. Stabilizing adversarially learned one-class novelty detection using pseudo anomalies[J]. IEEE Transactions on Image Processing, 2022, 31: 5963-5975.
[20] ASTRID M, ZAHEER M Z, LEE S I. Synthetic temporal anomaly guided end-to-end video anomaly detection[C]//2021 IEEE/CVF International Conference on Computer Vision Workshops(ICCVW). Montreal: IEEE, 2021: 207-214.
[21] YU G, WANG S Q, CAI Z P, et al. Cloze test helps: effective video anomaly detection via learning to complete video events[C]//Proceedings of the 28th ACM International Conference on Multimedia. Seattle: ACM, 2020: 583-591.
[22] MORAIS R, LE V, TRAN T, et al. Learning regularity in skeleton trajectories for anomaly detection in videos[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach: IEEE, 2019: 11988-11996.
[23] LI J, HUANG Q W, DU Y J, et al.Variational abnormal behavior detection with motion consistency[J]. IEEE Transactions on Image Processing, 2022, 31: 275-286.
[24] LIU W, LUO W X, LI Z X, et al. Margin learning embedded prediction for video anomaly detection with a few anomalies[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Macao: ACM, 2019: 3023-3030.
[25] LIU W, LUO W X, LIAN D Z, et al. Future frame prediction for anomaly detection:a new baseline[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6536-6545.
[26] GEORGESCU M I, BRBLU A, IONESCU R T, et al. Anomaly detection in video via self-supervised and multi-task learning[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Nashville: IEEE, 2021: 12737-12747.
[27] GEORGESCU M I, IONESCU R T, KHAN F S, et al. A background-agnostic framework with adversarial training for abnormal event detection in video[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9): 4505-4523.
[28] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
[29] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
[30] DOSOVITSKIY A, FISCHER P, ILG E, et al.FlowNet: learning optical flow with convolutional networks[C]//2015 IEEE International Conference on Computer Vision(ICCV). Santiago: IEEE, 2015: 2758-2766.