[1]刘 存,杨曦晨,陈天海,等.视频质量波动影响下的视频异常检测算法有效性分析[J].常州大学学报(自然科学版),2024,36(03):45-58.[doi:10.3969/j.issn.2095-0411.2024.03.006]
 LIU Cun,YANG Xichen,CHEN Tianhai,et al.Effectivity analysis of video anomaly detection algorithm with video quality fluctuation[J].Journal of Changzhou University(Natural Science Edition),2024,36(03):45-58.[doi:10.3969/j.issn.2095-0411.2024.03.006]
点击复制

视频质量波动影响下的视频异常检测算法有效性分析()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第36卷
期数:
2024年03期
页码:
45-58
栏目:
计算机与信息工程
出版日期:
2024-05-28

文章信息/Info

Title:
Effectivity analysis of video anomaly detection algorithm with video quality fluctuation
文章编号:
2095-0411(2024)03-0045-14
作者:
刘 存 杨曦晨 陈天海 吉根林
南京师范大学 计算机与电子信息学院, 江苏 南京 210023
Author(s):
LIU Cun YANG Xichen CHEN Tianhai JI Genlin
School of Computer and Electronic Information, Nanjing Normal University, Nanjing 210023, China
关键词:
异常检测 质量波动 仿真 失真 有效性
Keywords:
anomaly detection quality fluctuation simulation distortion effectiveness
分类号:
TP 391
DOI:
10.3969/j.issn.2095-0411.2024.03.006
文献标志码:
A
摘要:
大部分异常检测算法并没有考虑实际场景中视频质量波动对算法性能的影响。文章首先选用视频异常检测领域的公开数据集,并采用仿真方式在其中加入监控视频中的常见失真,构建出面向异常检测的失真数据集。然后系统地分析了视频质量波动对4个经典的视频异常检测算法性能的影响。实验结果表明,监控数据质量下降会对视频异常检测算法的有效性产生负面效果,并且不同失真类型、不同失真程度对算法的影响存在差异,其中高斯噪声失真和过亮失真对算法的影响较大。
Abstract:
As most anomaly detection methods generally ignore the impact of video quality fluctuations in actual scenarios on their performance. Firstly, public datasets from the field of video anomaly detection were selected, and a distortion dataset for anomaly detection by artificially introducing common distortions found in surveillance videos through simulation methods was constructed. This paper systematically analyzes the impact of video quality fluctuations on the performance of four classic video anomaly detection algorithms. And the experimental results show that the degradation of surveillance data quality have a negative effect on the effectiveness of the video anomaly detection algorithm. Moreover, the impact of different distortion types and different degrees of distortion on the algorithm is different, as well as, Gaussian noise distortion and over brightness distortion have a greater impact on the algorithm.

参考文献/References:

[1] ZHAI G T, MIN X K. Perceptual image quality assessment: a survey[J]. Science China Information Sciences, 2020, 63(11): 211301.
[2] SULTANI W, CHEN C, SHAH M. Real-world anomaly detection in surveillance videos[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6479-6488.
[3] LI W X, MAHADEVAN V, VASCONCELOS N. Anomaly detection and localization in crowded scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(1): 18-32.
[4] LU C W, SHI J P, JIA J Y. Abnormal event detection at 150 FPS in MATLAB[C]//2013 IEEE International Conference on Computer Vision. Sydney: IEEE, 2013: 2720-2727.
[5] SESHADRINATHAN K, SOUNDARARAJAN R, BOVIK A C, et al. Study of subjective and objective quality assessment of video[J]. IEEE Transactions on Image Processing, 2010, 19(6): 1427-1441.
[6] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
[7] SHEIKH H R, BOVIK A C. Image information and visual quality[J]. IEEE Transactions on Image Processing, 2006, 15(2): 430-444.
[8] XUE W F, ZHANG L, MOU X Q, et al. Gradient magnitude similarity deviation: a highly efficient perceptual image quality index[J]. IEEE Transactions on Image Processing, 2014, 23(2): 684-695.
[9] ZHANG L, ZHANG L, MOU X Q, et al. FSIM: a feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8): 2378-2386.
[10] CHEON M, YOON S J, KANG B, et al. Perceptual image quality assessment with transformers[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW). Nashville: IEEE, 2021: 433-442.
[11] DING K Y, LIU Y, ZOU X Y, et al. Locally adaptive structure and texture similarity for image quality assessment[C]//Proceedings of the 29th ACM International Conference on Multimedia. Virtual Event:ACM, 2021: 2483-2491.
[12] DING K Y, MA K D, WANG S Q, et al. Image quality assessment: unifying structure and texture similarity[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(5): 2567-2581.
[13] SU S L, YAN Q S, ZHU Y, et al. Blindly assess image quality in the wild guided by a self-adaptive hyper network[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Seattle: IEEE, 2020: 3664-3673.
[14] ZHU H C, LI L D, WU J J, et al. MetaIQA: deep meta-learning for no-reference image quality assessment[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Seattle: IEEE, 2020: 14131-14140.
[15] GU S Y, BAO J M, CHEN D, et al. GIQA: generated image quality assessment[C]//VEDALDI A, BISCHOF H, BROX T, et al. European Conference on Computer Vision. Cham: Springer, 2020: 369-385.
[16] REN J, XIA F, LIU Y M, et al. Deep video anomaly detection: opportunities and challenges[C]//2021 International Conference on Data Mining Workshops(ICDMW). Auckland: IEEE, 2021: 959-966.
[17] PARK H, NOH J, HAM B. Learning memory-guided normality for anomaly detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Seattle: IEEE, 2020: 14360-14369.
[18] ZAHEER M Z, LEE J H, ASTRID M, et al. Old is gold: redefining the adversarially learned one-class classifier training paradigm[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Seattle: IEEE, 2020: 14171-14181.
[19] ZAHEER M Z, LEE J H, MAHMOOD A, et al. Stabilizing adversarially learned one-class novelty detection using pseudo anomalies[J]. IEEE Transactions on Image Processing, 2022, 31: 5963-5975.
[20] ASTRID M, ZAHEER M Z, LEE S I. Synthetic temporal anomaly guided end-to-end video anomaly detection[C]//2021 IEEE/CVF International Conference on Computer Vision Workshops(ICCVW). Montreal: IEEE, 2021: 207-214.
[21] YU G, WANG S Q, CAI Z P, et al. Cloze test helps: effective video anomaly detection via learning to complete video events[C]//Proceedings of the 28th ACM International Conference on Multimedia. Seattle: ACM, 2020: 583-591.
[22] MORAIS R, LE V, TRAN T, et al. Learning regularity in skeleton trajectories for anomaly detection in videos[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach: IEEE, 2019: 11988-11996.
[23] LI J, HUANG Q W, DU Y J, et al.Variational abnormal behavior detection with motion consistency[J]. IEEE Transactions on Image Processing, 2022, 31: 275-286.
[24] LIU W, LUO W X, LI Z X, et al. Margin learning embedded prediction for video anomaly detection with a few anomalies[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Macao: ACM, 2019: 3023-3030.
[25] LIU W, LUO W X, LIAN D Z, et al. Future frame prediction for anomaly detection:a new baseline[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6536-6545.
[26] GEORGESCU M I, BRBLU A, IONESCU R T, et al. Anomaly detection in video via self-supervised and multi-task learning[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Nashville: IEEE, 2021: 12737-12747.
[27] GEORGESCU M I, IONESCU R T, KHAN F S, et al. A background-agnostic framework with adversarial training for abnormal event detection in video[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9): 4505-4523.
[28] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
[29] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
[30] DOSOVITSKIY A, FISCHER P, ILG E, et al.FlowNet: learning optical flow with convolutional networks[C]//2015 IEEE International Conference on Computer Vision(ICCV). Santiago: IEEE, 2015: 2758-2766.

备注/Memo

备注/Memo:
收稿日期: 2024-01-26。
基金项目: 国家自然科学基金资助项目(41971343); 国家自然科学基金青年基金资助项目(62101268)。
作者简介: 刘存(1999—), 女, 山东济宁人, 硕士生。通信联系人: 吉根林(1964—), E-mail: glji@njnu.edu.cn
更新日期/Last Update: 1900-01-01