1989

算子法在聚合反应动力学中的应用

李 国 莹

摘 要

本文介绍处理聚合反应动力学问题的一种数学方法——算子法。给出了常用公 式和求解程序,并作了实例分析。

一、引言

继生成函数法,统计法,图形法之后,用算子法处理聚合反 应 动 力 学 问 题 也 已 见效^{(2),(3)},本文结合实例介绍算子法在该领域中的应用。

(接第38页)

参考 文献

- [1] 林西平, 栗洪道. 石油化工, 1987; 16(4): 265
- 〔2〕 慈云祥,杨若明.分析化学,1982;10(9):529
- [3] 李永华. 理化检验, 1980; 16(3): 33
- [4] 万琼华. 贵州地质, 1980; 2: 160

The Determination of Trace Aluminium in Butynediol

Sun Xiaojuan Qi Jianxin

ABSTRACT

In this paper, the determination of trace Aluminium in butynediol, which was synthesized by an improved. Reppe method with using X-type catalyst, was carried out by spectrophotomtric analysis in CAS-CTMAB alcoholic system.

记

$$\phi$$
 (D) = $a_0 D^n + a_1 D^{n-1} + \cdots + a_n$

其中 $D^i = \frac{d^i}{dx^i}$ 和 $\phi(D)$ 均为线性算子。如果 y_0 是微分方程

$$\phi(D) y = R(x) \tag{1.1}$$

的解, 我们定义其逆算子

$$(\phi(D))^{-1} R(x) = y_{\nu}$$
 (1,2)

 $\{\phi(D)\}^{-1}$ 实际上建立的是 $\{P(x)\}$ 与 (1,1) 的解集 $\{y_p\}$ 之间的对应,在允许相差齐次方程 $\{\phi(D)\}$ $\{y_p\}$ 的一个解的意义下,可以认为 $\{y_p\}$ 中的函数是"等同"的,所以 (1,2) 中就用 $\{y_p\}$ 。所谓算子法就是根据聚合反应动力学方程组的特点,运用逆算子 $\{\phi(D)\}^{-1}$ 的一些运算技巧和公式,直接得到方程组解的一般表达式。

二、关于[\$(D)]-1 的几个公式

(一) 一般公式

文献[5]曾提到以下几个一般公式:

1.
$$(\phi(D))^{-1} e^{bx} = \begin{cases} \frac{1}{\phi(b)} e^{bx}, & \stackrel{\text{def}}{=} \phi(b) \neq 0 \\ \frac{x^k e^{bx}}{\phi^{(k)}(b)}, & \stackrel{\text{def}}{=} \phi(b) = \cdots = \phi^{(k-1)}(b) = 0, \phi^{(k)}(b) \neq 0 \end{cases}$$
 (2,1)

2.
$$[\phi(D)]^{-1}e^{bx}F(x) = e^{bx}[\phi(D+b)]^{-1}F(x)$$
 (2,3)

3.
$$[\phi(D)]^{-1} x^m = (C_0 + C_1D + \dots + C_mD^m) x^m, (\phi(0) \neq 0)$$
 (2,4)

其中m为正整数, C_0 , $C_1 \cdots C_m$ 是 $\frac{1}{\phi(x)}$ 在 x = 0 处 Taylor 展式的系数。

公式的正确性可利用 (D)的下列性质直接验证。

1°
$$\phi(D)(x^k e^{bx}) = \sum_{i=0}^k \frac{D^i x^k}{i!} \phi^{(i)}(b) e^{bx}$$

$$2^{\circ}$$
 $\phi(D) \left(e^{bx} G(x)\right) = e^{bx} \phi(D+b) G(x)$

3° 如果
$$\phi(D) = \sum_{j=0}^{n} a_{n-j} D^{j}$$
, $f(D) = \sum_{j=0}^{k} C_{j} D^{j}$, 则

$$\phi$$
 (D) f (D) $x^k = \sum_{j=0}^k \left(\sum_{j=0}^i a_{n-j} C_{j-1} \right) \frac{k!}{i!} x^{k-1}$

关于 φ(D) 的这些性质用 Leibniz 公式是不难得到的。

(二) 具体公式

求解聚合反应动力学方程时常用的几个具体公式为:

(1) 当 $b \neq b_k$ (K = 0, 1, 2, ..., m) 时

$$\left[\prod_{k=0}^{m} (D+b_{k})\right]^{-1} e^{-bx} = e^{-bx} / \prod_{k=0}^{m} (b_{k}-b)$$
 (2.5)

特别当 b。=b₁=···=b_m+b 时

$$(D+b_0)^m)^{-1}e^{-bx} = e^{-bx}/(b_0-b)^m$$
 (2,5)*

(2)
$$(D+b)^{1} \int_{-1}^{1} e^{-bx} = e^{-bx} x^{1}/i!$$
 (2,6)

(3) 当 b₁ + b₂

$$((D+b_1)^i)^{-1}\{x^s e^{-b}x^x\} = \frac{e^{-b}x^x}{(b_1-b_2)^i} \sum_{j=0}^{g} \frac{(-1)^j \binom{i+j-1}{j}}{(b_1-b_2)^j} \cdot \frac{s! x^{g-j}}{(s-j)!}$$
(2.7)

证明:

记
$$\phi(D) = \prod_{k=0}^{m} (D + b_k)$$
, 因 $\phi(-b) \neq 0$, 故由 (2,1) 式即得 (2,5) 式。

记 $\phi(D) = (D+b)^1$, 因 $\phi(-b) = \cdots = \phi^{(1-1)}(-b) = 0$, $\phi^{(1)}(-b) = i! \neq 0$, 故由 (2.2) 式即得 (2.6) 式。

记
$$\phi(D) = (D + b_1)^t$$
, $f(D) = \phi(D - b_2) = (D - b_2 + b_1)^t$, 则由 (2,3) 知
$$(\phi(D))^{-1} \{x^*e^{-b_2x}\} = e^{-b_3x}(\phi(D - b_2))^{-1} x^* = e^{-b_3x}(f(D))^{-1} x^*$$
 (2,8)

由(2,4)知

$$(f(D))^{-1} \mathbf{x}^{n} = \sum_{j=0}^{n} C_{j} D^{j} \mathbf{x}^{n} = \sum_{j=0}^{n} C_{j} \frac{s! \mathbf{x}^{n-j}}{(s-j)!}$$
 (2,9)

汶里

$$C_{j} = \frac{1}{i1} \left[\frac{1}{f(x)} \right]^{(j)} \Big|_{x=0} = (-1)^{j} \binom{i+j-1}{j} (b_{1}-b_{2})^{-i-j}$$

把 (2,9) 代入 (2,8) 后即可得到公式 (2,7)。

三、求解的基本步骤

先看一个简单的例子,其实际背景可参见文献[4]。 已知 $y_1 = p_0 e^{-b_0 x} + p_1 e^{-b_1 x} + p_2 e^{-b_2 x}$,求解微分方程组:

$$(D+b_0) y_n = y_{n-1}, y_n \mid_{x=0} = 0 \mid_{(n>1)}$$
 (3.1)

其中 $p^0 + p_1 + p_2 = 0$, $b_1 + b_0$ (i = 1,2)。

$$\begin{aligned} \mathbf{fR}_{1} & y_{n} = (D + b_{0})^{-1} y_{n-1} + C_{n} e^{-b_{0}x} \\ &= [(D + b_{0})^{2}]^{-1} y_{n-2} + C_{n-1} (D + b_{0})^{-1} e^{-b_{0}x} + C_{n} e^{-b_{0}x} \\ &= \cdots \\ &= [(D + b_{0})^{n-1}]^{-1} y_{1} + \sum_{k=0}^{n-2} C_{n-1} [(D + b_{0})^{k}]^{-k} e^{-b_{0}x} \end{aligned}$$

利用(2,5)*和(2,6)算出:

$$(D + b_0)^{n-1})^{-1} y_1 = \frac{p_0 e^{-b_0 x}}{(n-1)!} + \frac{p_1 e^{-b_1 x}}{(b_0 - b_1)^{n-1}} + \frac{p_2 e^{-b_2 x}}{(b_0 - b_2)^{n-1}}$$

以及

$$(D + b_0)^1 = e^{-b_0 x} = \frac{x^1 e^{-b_0 x}}{i!}$$

故

$$y_{n} = \frac{p_{0}x^{n-1} e^{-b_{0}x}}{(n-1)!} + \frac{p_{1}e^{-b_{1}x}}{(b_{0}-b_{1})^{n-1}} + \frac{p_{2}e^{-b_{2}x}}{(b_{0}-b_{2})^{n-1}} + \sum_{i=0}^{n-1} C_{n-i} \frac{x^{i}e^{-b_{0}x}}{i!}$$
(3,2)

同理, 当 n-k>1时成立

$$y_{n-k} = \frac{p_0 x^{n-k-1} e^{-b_0 x}}{(n-k-1)!} + \frac{p_1 e^{-b_1 x}}{(b_0 - b_1)^{n-k-1}} + \frac{p_2 e^{-b_2 x}}{(b_0 - b_2)^{n-k-1}} + \sum_{i=0}^{n-k-1} C_{n-k-i} \frac{x^i e^{-b_0 x}}{i!}$$

利用初始条件 $y_{n-k} \mid x=0 = 0 (n-k>1)$, 再注意到 $x^1 = 0$ (当 $i \neq 0$) 定出常数

$$C_{n-k} = \frac{-p_1}{(b_0 - b_1)^{n-k-1}} + \frac{-p_2}{(b_0 - b_2)^{n-k-1}} \quad (n-k > 1)$$

即

$$C_{n-1} = \frac{-p_1}{(b_0 - b_1)^{n-1-1}} + \frac{-p_2}{(b_0 - b_2)^{n-1-1}} \quad (n-i>1)$$

把 C_{n-1} 代入 (3,2), 并利用条件 $p_0 = -p_1 - p_2$ 经过整理

$$y_{n} = \frac{p_{1} e^{-b_{1}x}}{(b_{0} - b_{1})^{n-1}} \left\{ 1 - \sum_{i=0}^{n-1} \frac{(b_{0} - b_{1})x)^{i}}{i!} e^{-(b_{0} - b_{1})x} \right\}$$

$$+ \frac{p^{2} e^{-b_{2}x}}{(b_{0} - b_{2})^{n-1}} \left\{ 1 - \sum_{i=0}^{n-1} \frac{(b_{0} - b_{2})x)^{i}}{i!} e^{-(b_{0} - b_{2})x} \right\}$$
(3,3)

显然, 可把上述过程概括为以下基本步骤:

- (1) 把 y_n 表为 ((D+b_o)ⁿ⁻¹]⁻¹ y₁ 与 C_{n-1} ((D+b_o)¹]⁻¹ e^{-b_ox} 的和式。
- (2) 用逆算子公式求出 $(D+b_0)^{n-1}J^{-1}y_1$, 以及 $(D+b_0)^1J^{-1}e^{-b_0x}$.
- (3) 用初始条件确定常数 C_{n-1}(0≤i≤n-2)
- (4) 经整理得到 ya 的表达式。

四、实例分析

现在以多官能团活性聚合物分子量分布问题为例介绍算子法的应用。我们用 I 和M 分别代表引发剂和单体分子及其浓度, K_1 和 K_2 分别代表链引发和链增长反应速度常数,Y 代表官能团的数目, N_2 代表已有 I 个链引发,聚合度为 n 的聚合物分子及其浓度。并记

$$x = \int_{0}^{t} K_{p} M dt$$
, $D = -\frac{d}{dx}$, $a = K_{i}/K_{p}$
 $I \Big|_{x=0} = I_{0}$, $N_{i}^{z} = N_{z}$, $N_{0} = I$

则由反应机理可列出下列动力学方程

$$(D + \gamma a) I = 0 (4,1)$$

$$\{D+l+(Y-l) \text{ a}\} N_l = (Y-l+1) \text{ a } N_{l-1} \ (Y \gg l \gg 1)$$
 (4.2)

$$[D+l+(Y-l) \text{ a}] N_n^l = (Y-l+1) \text{ a} N_{n-1}^{l-1} + l N_{n-1}^l \text{ (n>l>1)} [(4,3)^*]$$

相应的初始条件为:

$$I \Big|_{x=0} = I_0, \quad N_n^l \Big|_{x=0} = 0 \quad (Y \geqslant l \geqslant 1, \quad n \geqslant l)$$

由(4,1)易知其解为:

$$I = I_0 e^{-\gamma_B x} \tag{4.4}$$

下面说明如何用算子法对动力学方程组(4,2),(4,3)求解。

(一) 解微分方程组(4,2)

首先,在(4,2)中令1=1,不难得到:

$$N_1 = \frac{I_0 \gamma_a}{1-a} \left\{ e^{-\gamma_a x} - e^{-(1+(\gamma-1)a)x} \right\}$$
 (4.5)

根据算子法四个基本步骤依次推得:

(1)
$$N_{l} = \frac{a^{l-1}(Y-1)!}{(Y-l)!} [\phi(D)]^{-1} N_{l}$$

$$+ \sum_{k=0}^{l-2} C_{l-k} \frac{a^{k}(Y-l+k)!}{(Y-l)!} [\phi_{k}(D)]^{-1} e^{-((l-k)+(Y-l+k))!} x$$

其中 $\Phi(D) = \prod_{k=0}^{l-2} [D + (l-k) + (Y-l+k) a]$

$$\Phi_{k}(D) = \prod_{l=0}^{k-1} (D + (l-i) + (Y - l + i) a)$$

(2)
$$\left[\Phi(D) \right]^{-1} N_1 = \frac{I_0 \gamma a}{l! (1-a)^{\ell}} \left\{ e^{-\gamma a x} - l e^{-(1+(\gamma-1)a)x} \right\}$$

$$\left[\Phi_k(D) \right]^{-1} e^{-((1-k)+(\gamma-l+k)a)x} = \frac{e^{-((l-k)+(\gamma-l+k)a)x}}{k! (1-a)^k}$$

(3)
$$C_{l-k} = \frac{\prod_{0} a^{l-k}}{(1-a)^{l-k}} \sum_{i=2}^{l-k} (-1)^{l-k-1} (i-1) {\gamma-i \choose l-k-i} {\gamma \choose i}$$

(4)
$$N_l = \frac{I_0 a^l e^{-\gamma^2 x}}{(1-a)^l} {\gamma \choose l} \sum_{m=0}^{l} (-1)^m {l \choose m} e^{-m(1-a)x} (\gamma \geqslant l \geqslant 1)$$
 (4,6)

(二) 解微分方程组(4,3)

[#]理解 $N_{n-1}^0 = 0$ (n > 1), $N_0^1 = 0$

同样在(4,3)中先讨论1=1的情形,这时方程组具体形式为:

$$(D+1+(\gamma-1) a) N_n^1 = N_{n-1}^1 \quad (n > 1)$$
(4.7)

其中 $N_1' = N_1$ 已由 (4,5) 给出,因此对微分方程组 (4,6) 我们同样可以用基本步骤求解,得到

$$N_{n}^{1} = \frac{I_{0} \gamma_{a}}{(1-a)^{n}} \left\{ 1 - \sum_{i=0}^{n-1} \frac{\left((1-a) \times \right)^{i}}{i!} e^{-(1-a) \times i} \right\}$$
 (4.8)

依次类推相继得:

$$\begin{split} N_{n}^{2} &= \frac{I_{0}\left(\frac{\gamma}{2}\right)a^{2} e^{-\gamma ax}}{(1-a)^{n}} \left\{ (n-1) - 2\sum_{i=0}^{n-2} (n-i-1) \frac{((1-a)x)^{i}}{i!} e^{-(1-a)x} + \sum_{i=0}^{n-2} (n-i-1) \frac{(2(1-a)x)^{i}}{i!} e^{-2(1-a)x} \right\} \\ &+ \sum_{i=0}^{n-2} (n-i-1) \frac{(2(1-a)x)^{i}}{i!} e^{-2(1-a)x} \right\} \\ N_{n}^{3} &= \frac{I_{0}\left(\frac{\gamma}{3}\right)a^{3} e^{-\gamma ax}}{(1-a)^{n}} \left\{ \frac{(n-1)(n-2)}{2!} - 3\sum_{i=0}^{n-3} \frac{(n-i-1)(n-i-2)}{2!} \cdot \frac{(2(1-a)x)^{i}}{i!} e^{-2(1-a)x} - \sum_{i=0}^{n-3} \frac{(n-i-1)(n-i-2)}{2!} \cdot \frac{(2(1-a)x)^{i}}{i!} e^{-2(1-a)x} \right\} \\ &- \sum_{i=0}^{n-3} \frac{(n-i-1)(n-i-2)}{2!} \cdot \frac{(3(1-a)x)^{i}}{i!} e^{-3(1-a)x} \right\} \end{split}$$

最后,使用数学归细法证明:

$$N_{n}^{l} = \frac{I_{0} \binom{\gamma}{l} a^{l} e^{-\gamma a x}}{(1-a)^{n}} \sum_{m=0}^{l} (-1)^{m} \binom{l}{m} \sum_{l=0}^{n-l} \binom{n-l-1}{l-1} \frac{(m(1-a)x)^{l}}{i!} e^{-m(1-a)x}$$

这就是 Y 官能团活性聚合物的分子量分布函数,应用算子法不但可求聚合物的分子量分布,还可用来求平均聚合度,对链引发反应速度常数可以不相等的一般情形,用算子法也已求得三官能团活性聚合物的分子量分布和平均聚合度⁽³⁾。

参考文献

- [1] 颜德岳,李国莹,江元生.中国科学,1981;(1):39
- [2] 李国莹, 颜德岳, 江元生. 同济大学学报, 1981, (1), 23
- 〔3〕李国莹. 应用数学, 1988; (4): 91
- [4] 颜德岳. 高分子通讯, 1979; (6), 321
- [5] M.R. Spiegel. Advance Mathematics for Engineer and Scientists. 上海:上海科技出版社, 1978

^{*}因为(4,7)是方程(3,1)的特例,故(4,8)包含(3,3)中。

^{**}推导中需要 (2,7) 式

1989

合成羟基苯甲醛新方法的研究进展

邬 国 英

摘 要

本文介绍了国内外改进 Reimer—Tiemann 反 应以及催化合成羟基苯甲醛的新方法,并进行了较详细的评述。合成羟基苯甲醛的研究进展,涉及到有机合成化学的边缘学科领域,因此,深入了解并研究这方面的课题,有重要的意义。

芳核上引入醛基(甲酰化)制备芳香醛,是一个十分重要的化工过程,这类产品中最重要的是邻羟基苯甲醛(水杨醛)、对羟基苯甲醛、β-萘酚醛等。它们是化工、医药、农药、香料、染料等许多行业的重要中间体。

目前工业上要求以苯酚为原料,与氯仿 + NaOH 反应,制备羟基苯甲醛 (即 Reimer-Tiemann 反应,简称 R—T 反应)。也有用甲醛代替氯仿的 (1)。这种方法反应复杂,选择性较低。如 R—T 反应的生成产物,主要是水杨醛(收率 20—35%)和对羟基苯甲醛(8—12%),伴有较多的焦油生成 (2)。因此,过程原料消耗大,产品分离工艺复杂。这些特点与其它的芳核甲酰化过程类似。如在 A1Cl。存在下,用 CO+HCl 进行苯的甲酰化过程(Gatterman-Koch 反应),用 DMF 和 POCl。制备取代苯甲醛 (Vilsmaier 反应)等。

(接第44页)

Application of Operator Method in Polymeric Reaction Kinetics

Li Guoying

ABSTRACT

How to handle the problems of the polymeric reaction kinetics, the article introduces a mathematic method --- operator method, gives common formulas, solving programs and analysis of practical examples.