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Abstract: Lost circulation is a significant challenge in oil and gas drilling, which can lead to various
costly and time-consuming problems. It is of great significance to use artificial intelligence technology
to accurately predict the risk of lost circulation. The lost circulation prediction problem was converted
into an imbalanced classification problem, which pose challenges to traditional deep learning models
due to the imbalance between categories and the lack of high correlation between drilling features. Ac-
curacy is not an appropriate measurement for imbalanced classification algorithms. A deep AUC maxi-
mization (DAM) algorithm, which is called FAUC-S, is introduced in this paper. It trains a combina-
tion deep learning model by focusing on the AUC loss of hard samples (FAUC-S). Several traditional
deep learning methods are also applied to classify lost circulation risk during oil exploration in the ex-
periments. The result shows that the FAUC-S method achieved the highest accuracy, recall, and F;
score among the other three models. This confirms that the FAUC-S model has superior classification
performance. Therefore, the successful implementation of this deep model can help drilling teams ef-
fectively solve drilling problems.
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Lost circulation is a common complex downhole problem encountered in oil and gas drilling opera-
tions, where the drilling fluid (also known as mud) enters the formation instead of returning to the
surface through the annulus''. The incidence of lost circulation in the world accounts for about 20%
to 25% of the total number of drilling operations, with annual costs for plugging leaks reaching as
high as 4 billion dollars. China’s oil drilling engineering also faces the challenge of lost circulation™*.
According to the statistics of China Petroleum Group Oilfield Technology Service Co., Ltd., during
2017—2018, the total loss time of complex accidents in domestic and overseas blocks of China Petrole-
um Natural Gas Corporation Limited (abbreviated as “China Petroleum”) was caused by well leaks,
accounting for more than 70% of the total loss time, with an average annual economic loss exceeding 4
billion yuan; in the deep layers of the Tarim Kugqa Mountain front, a total of 76 wells were completed
from 2017 to 2019, with 354 well leak incidents, of which 65% were severe well leaks.

This results in a decrease in drilling efficiency, increased costs, and potential damage to the well-

L]

bore and formation, and even blowouts'*. To address the issue of lost circulation, various techniques

have been developed, such as using lost circulation pills, water-based muds, and synthetic-based

muds!™®. These techniques aim to reduce the fluid loss and improve the drilling efficiency. However,

these methods can be time-consuming and expensive, and may not always be effective in all conditions.

Lost circulation can be divided into permeability leakage, fractures Sexual leakage and cave leak-

[3]

age"™!. There are several factors that can cause lost circulation, including formation pressure, forma-

tion porosity, and the rheology of the drilling fluid'™. The early warning of lost circulation is of great

significance. The occurrence of lost circulation incidents can be avoided by adjusting the wellbore traj-

ectory or drilling parameters, thus saving on drilling time and costs!™,

To detect drilling fluid leaks accurately, it is crucial to design a classification algorithm that can

81 However, for large oil fields, implemen-

classify different types of drilling fluid leaks appropriately
ting algorithms that can efficiently process large datasets consisting of tens of thousands of data re-
cords is the most fundamental challenge'”. Moreover, the classification problem of drilling fluid leak-
age is typically an imbalanced data classification problem, where the number of data records in the no/
[10]

low loss category is significantly higher than in the severe/complete loss category-'”’, This poses a sig-

nificant challenge to the accuracy of traditional models. As a result, developing an accurate classifica-
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tion algorithm that can detect lost circulation is crucial.

1 Background

In recent years, the application of artificial intelligence (AD in the oil and gas industry has gained

18- 11 " Data-driven methods have been used to predict and prevent lost circulation

significant attention
in drilling operations. Operators can make more informed decisions regarding drilling fluids and tech-
niques, and optimize their operations to reduce the risk of lost circulation. For example, Al can be
used to select the most suitable drilling fluid properties, such as viscosity and filtration control, based
on the formation characteristics and expected pressure conditions. Additionally, Al can also help oper-
ators identify the most effective lost circulation control techniques, such as using lost circulation pills
or changing the fluid loss properties of the drilling fluid-""%.

Machine learning algorithms analyze large amounts of data collected from drilling operations, in-
cluding wellbore pressure, fluid properties, and formation characteristics, to identify patterns and
predict the likelihood of lost circulation occurrences™® '*!. The tree models and network models are
proposed to fit the relation between the features and the lost circulation.

Lost circulation is classified based on the loss rate. The classification includes no loss, seepage
loss, partial loss, severe loss, and complete loss of drilling fluid®. The severity of the leakage de-
pends on the loss rate, and each category has its unique characteristics. The drilling team needs to ad-
dress these leakage issues immediately to avoid more severe problems™"'",

While in the lost circulation prediction problems, the distribution of data is imbalanced, where
there are few samples labeled with lost circulation accident. The traditional learning algorithms have
poor performance. Deep AUC maximization (DAM) is a popular machine learning method for imbal-

U315] - Tt learns an imbalanced classifier by maximizing the

anced datasets, suitable for large-scale data
AUC metric which is an important assessment performance for imbalanced learning problems. It can
improve classification of highly imbalanced data'®™. However, DAM has not been explored for drilling
fluid leak classification in oil exploration. It is a crucial area that needs accurate classification algo-
rithms. Applying DAM to the problem can improve safety and efficiency of oil exploration. The inte-

gration of Al in oil and gas drilling operations has the potential to improve drilling efficiency, reduce

costs, and minimize the environmental impact of lost circulation.

2 Deep AUC maximization

2.1 AUC maximization problems

The area under the receiver operating characteristic curve (AUC), which is also called AUC
score, is a basic performance metric for imbalanced classification algorithm. A learning classifier can
be obtained by minimizing the surrogate loss of misclassification error’'™® . The AUC metric is then
used to evaluate the performance of the learned classifier. The difference between evaluation metrics
and optimization metrics restricts the performance of learning algorithms. In this paper, direct method
is took by maximization the AUC to fit the data. Directly maximizing the AUC score is a better choice

than optimizing the accuracy metric.
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The receiver operating characteristic curve (ROC) is an important graphical evaluation metric for

classification problems"**’, In the categorical o
prediction phase, samples with predicted values .
greater than the threshold are classified as positive, i
otherwise they are classified as negative. As the E0'6_
threshold increases, the number of samples predic- To4r
ted to be positive decreases. Therefore, both true 02r
positive rate (TPR) and false positive rate (FPR) 0 SRR Y T
decrease as the threshold increases and increases as FPR
E 1 ROC iz

the threshold decreases. ROC reflects this co-direc-
tional variation of FPR and TPR (Fig.1).

AUC is an ROC-based scalar that can be used to directly compare the predictive performance of
[16]

Fig.1 Curve of receiver operating characteristic

classifiers"®. It provides a single number that summarizes the model’s performance across all possible
classification thresholds. AUC is a way to measure how well a binary classification model works™". Tt
looks at whether the model can identify positive cases (data that belong to the studied group) before
negative cases (data that doesn’t belong to the group). AUC scores range from 0 to 1, with 1 being
the best score. The higher the value of AUC (Aauc) s the better the classifier performance.

Given a training dataset { (x;» v;)}", x; €R?, where S;, S_ represent the index of positive
samples and negative samples, respectively, and P=1[S. |, N=|S_|. AUC score of a classifier
f(x) can be calculated with the Wilcoxon-Mann-Whitney statistics?*!. That is

A = %; LG = )] (D
i€s, jes.
where I [ ¢ ]is the indicator function, returning 1 for the true event and 0 otherwise. Maximizing the
AUC score is equivalent to minimizing the AUC risk, which is 1—2Asuc. The corresponding optimiza-
tion problem can be defined as follow
mfin% %;} Z} I < f(x)] )
€3, je:
The objective AUC loss is written as a sum of pairwise 0—1 loss, and this formulation makes it

difficult to be optimized. The non-convex of the pairwise 0—1 loss makes the optimization of AUC

risk be a difficulty problem, unfortunately.

2.2 FAUC-S method

Many methods attempted to replace the non-convex 0—1 loss function with a surrogate pairwise
convex function, including pairwise hinge loss and pairwise square loss. Due to the need for pairwise
comparisons between samples, the objective function has the computational complexity of (N-+P)?,
which makes it a great difficulty in large scale imbalanced learning problems. YING et al. "%/ trans-
formed the AUC optimization problem into an equivalent min-max optimization with a square loss as
the surrogate loss of AUC, and proposed a surrogate saddle loss with linear space and per-iteration

time complexities of O(d). The surrogate loss opens a door of deep AUC maximization method™"*.

The use of squared losses produces certain negative effects. The easy samples, which are classi-

fied correctly, may suffer larger losses than those without correct classification, which is unreasonable
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in optimization problems. Adjusting the importance of the sample can help to construct a more reason-
able way to calculate AUC loss. Recently, XU et al. **) proposed a focus AUC loss based on samples
(FAUC-S) by constructing a differentiable weight function that identifies hard and easy samples,
which makes easy samples have small losses, and hard samples have large losses. It is more reasonable
than the traditional AUC loss while having the same advantages on large-scale datasets. The weights
of hard samples which are difficult to classifier correctly are increasing and the weights of easy samples
which are classified correctly are decreasing. Let z; = (x;. y;), the optimization problem of the

FAUC-S method can be represented as

min max >, A(w;z) F(w.a,b,a;52,) (3

wiash [ ——

where F(w,a,b,a32)=0—p) (fwsx;) —a)?*I1(y;=1) —p(A—p)a* +2(p(1—p)+pf(wsx) [ (y;=
O—A—p) fwsx)DI(y;=1))+p(f(wsx,) —b)*I(y;=0) is the surrogate saddle loss of AUC metric,
w, a, b are the primal parameters and « is the dual parameter. The weight function is given as
J(l*C(f(w;xf)*a))y if y=1
A(W;z,-): ) .

la—cw—fwixn7 it y=0

which is used to focus on hard samples. C and y are hyperparameters. The primal-dual stochastic com-

€Y

positional adaptive (PDSCA) method is employed to minimize the objective loss function'’**"!, The
deep AUC maximization algorithms, including FAUC-S, can be applied in large-scale complex imbal-
anced learning problems, including image classification and so on. In this paper, The FAUC-S method
is applied in lost circulation recognition problems due to its imbalanced distribution.

In cases with multiclassification problems, a method called “one vs all” is used. This method
trains the model to recognize one group at a time, while grouping the other groups together as “not

[ 25]

that group”®'. This process is repeated for each group, and the scores are added to find the overall

performance of the model.

3 Result

3.1 Dataset

The lost circulation dataset is a collection of a significant 65 376 data records gathered from 20

wells and is used to evaluate the effectiveness of a
proposed DAM model. It is sourced from the drilling ®1 FRABEFIRAGEOEFLE

parameter dataset already published online in the Table 1 Number of samples with different labels in the

. . . lost circulation dataset
southern portion of the Azadegan field in southwest

Iran™ 22 It contains information on different cate- Classification Leakage Fluid-loss rate ~ Number
. q1- . . 0 No loss 0 49 545
gories of drilling fluid leakage losses, which are cat- o oss 7
. . 1 Seepage loss <10 12 880
egorized as no loss, seepage loss, partial loss, se-
2 Partial loss 10—100 2 647
vere loss, and complete loss. The number of data
3 Severe loss =100 270
records belonging to each category is listed in .
4 Complete loss No return 34

Table 1.
1t’s worth noting that the data records belonging to class 4, which represent complete loss, ac-

count for only 0. 05% of the total collected data, with just 34 complete loss records. In contrast, class
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0 and class 1, which represent no loss and seepage loss, respectively, account for over 95% of all da-
ta. This distribution of data is typical in real drilling processes, and it poses significant challenges to
traditional classification models due to the extreme imbalance in the number of data records in the

7],

datase The misclassifications made to minority classes can lead to serious mining problems, mak-

ing it crucial to develop models that can effectively handle imbalanced datasets.

U Tf a model can accurately identify the classifi-

Exploring for oil is a complex process in reality
cation of current drilling fluid leaks, it can help drilling teams make informed decisions about appropri-
ate plugging strategies for different leak classifications. This ensures the efficiency and safety of ex-
ploration. However, traditional models often struggle to identify minority classes, especially class 3
and class 4. Therefore, improving the precision and recall of these classes has become particularly im-

portant.

3.2 Data preparation

When collecting drilling parameter information using professional equipment in the real world, it
is not uncommon to encounter outliers and missing data records for certain variables, If this raw data
is used directly without being processed, it can negatively impact the model’s performance and result
in poor classification outcomes™®,

The original drilling dataset contains 22 variables, each of which provides information about the
drilling process. However, some of these variables have missing values. It is necessary to remove in-
complete data records and transform text descriptions of drilling fluid leaks into numerical types to fa-
cilitate model classification training. In addition, in order to focus on the issue of drilling fluid leak-

age, data records such as mechanical equipment failures were removed from the original dataset.

After filtering the data, Table 1 contains 65 376
x2 HRBEET 17T AN EENIEEE

Table 2 Value range of 17 features variables in lost cir-

data records, each of which has 17 features and a

dependent variable for drilling fluid leakage classifi- .
culation dataset

cation, as shown in Table 2. These features include

Feature Range
important information such as the drilling depth, Hole section/m 0.11-0. 66
the pump rate, and the mud weight. Depth/m 14—4 285
To avoid the bias of model numerical calcula- Rate of penetration/ (m « h™) 0616
Weight on bit/kg 0—35 834
tion weighting caused by excessively large values of Rotation/(r » min—1) -
a single feature variable, the minimum and maxi- Torque/ (N * m) 0—1 701
mum values of the 17 features data were standard- Standpipe pressure/MPa 0.062—26.99
ized. This is done to eliminate the influence of di- Flow in/(m?” = h™D) 065398
Flow out/ % 0—100
mensionality, so that the features can be compared Pump strokes/min! 6242
in the same numerical interval. By eliminating the Mud weight/ (kg * cm™3) 1056—2 032
influence of feature magnitude caused by dimension- Funnel viscosity/(h « m™%) 8.48—22.22
Plastic viscosity/(Pa ¢ s) 0. 003—0. 048

ality on analysis results, the features of different di-
mensions become comparable, and the model can
better capture the relationships between them !,

The input features were normalized, and gradi-

Yield point/Pa
Gel strength(10 s)/Pa
Gel strength(10 min) /Pa
Solid/ %

0. 957 6—22. 503 6

0.478 8—12.448 8

0.478 8—12.927 6
4—65
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ent descent optimization models were used. Normalizing input features can prevent some features from
dominating others, while gradient descent optimization models can speed up the convergence process

of the algorithm.

3.3 Classification model for lost circulation

Based on our analysis of the feature and class distribution of drilling datasets, the classification
problem of drilling fluid leakage is essentially a problem of imbalanced classification. To address this
issue, a deep neural network model was developed that used a compositional training approach. The
backbone of the model is resnet-20, and cross-entropy loss is used as its internal function. Additional-
ly, the method called FAUC-S is used™, which maximizes the AUC score for hard samples, to help
us learn a robust classifier that can handle minority classes better.

To solve the imbalanced lost circulation classification problem, three traditional network models
are applied to test the dataset. The first model is a convolutional neural network (CNN) that creates a
one-dimensional convolutional layer consisting of 64 filters with a kernel size of one?™. The second
model is a long short-term memory (LSTM) layer containing 32 neurons. The last model is a network
similar to LSTM, which contains 32 gated recurrent units (GRU) nodes™*.

In the next experimental section, these four network models will be applied to the lost circulation
classification problem to further verify the effectiveness of all methods. Our goal is to develop a com-
prehensive and robust classification system that can accurately identify drilling fluid leakage, even in
cases where the classes are imbalanced.

In the domain of lost circulation prediction problem, a structured dataset was created and subjec-
ted to preprocessing. The outcome was standardized numerical data that was utilized for training a ma-
chine learning model. To retrieve input data, the Python programming language was employed in con-
junction with the sklearn library. The dataset was then bifurcated into a training and testing set in a
7+ 3 ratio, with 65 376 data records being utilized. It was ensured that the testing set did not partici-
pate in the training process””. Each model was trained with a total of 100 epochs and a learning rate
of 0. 01. All models achieved convergence results. The final performance of the five classification mod-

els was calculated using the one vs all training method™”.

3.4 Model comparison results
Binary classification problems, the confusion
*3 REEME

matrix plays an important role in assessing a learn-
Table 3 Confusion matrix

ing classifier, which can be rewritten as a contin-

Predicted
gency table (Table 3). Confusion matrix
) ) Positive Negative
To make it easier to compare the performance —
Positive Tp Fx
of different classifiers, extract some statistics sca- Actual ; - .
Negative Fp T~

larsare needed from the confusion matrix. In the
context of traditional classification models, accuracy (A) is commonly utilized to evaluate the per-

formance of the classification process, which is defined as
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T+ Ty
To+Fp+Tx+ Fy

Where true positive (Tp) and true negative (Ty) to represent correctly predicted positive and negative

A (5

labels, respectively. And false positive (Fp) and false negative (Fy) represent incorrectly predicted
positive and negative labels, respectively. However, in real-world scenarios, the problem of imbal-
anced classification may arise where the distribution of the classes is not uniform. In such cases, accu-
racy alone may not be sufficient to reflect the classification information correctly. Hence, precision

(P.), recall (R), and F, score are often considered as additional performance metrics to evaluate the

classification process™*'.
Po=g (6)
R=tle )
F1:2><R(i>1<afre) )

Where P, represents the proportion of samples predicted to be positive that are truly positive, R re-
presents the proportion of positive samples that are accurately predicted, and F; score is the harmonic
average of precision and recall.

The performance of four different models in classifying data is evaluated using precision, recall,
and F| scores, which are calculated separately for each model on the test data. The scores of these
models for different metrics on the test data are presented in Table 4. The one-vs-all method are used
to train the multi-class lost circulation prediction problem, and the average performance metric are re-
corded in Table 5.

The experimental results reveal that FAUC-S outperforms the other models in this task, It
shows exceptional performance in no loss, seepage loss, partial loss, and complete loss categories.
In addition, among the majority classes of no loss and seepage loss, it still performs the best.

x4 AMAEEREIAEREER

Table 4 Performance measurements recorded under four different models

Classification

Methods Metrics
0 1 2 3 4

Precision 0.98 0. 80 0.74 0.78 1.00
LSTM Recall 0.94 0.88 0.89 0. 86 0. 80
F 0. 96 0. 84 0.81 0.82 0. 89
Precision 0. 98 0. 80 0.75 0.76 1.00
GRU Recall 0.94 0.87 0.88 0. 85 0.40
Fy 0. 96 0. 84 0.81 0. 80 0.57
Precision 0. 99 0.94 0.75 0. 85 0. 88
CNN Recall 0.98 0.90 0.95 0.94 0.70
IO 0. 99 0.92 0.84 0. 89 0.78
Precision 0.99 0.96 0.85 0.77 1.00
FAUC-S Recall 0.98 0.97 0.87 0.88 0.99
I 0.98 0.97 0. 86 0. 82 0. 99




c 42 - FMKFFR (B RAFER % 36 &

Furthermore, on an extremely small number of

RS A MARREN 2 EHFRRE TN EEEIR

complete losses, FAUC-S scores far exceed those of
Table 5 Multiclass performance measurements recorded

the other models. Thus, it can be concluded that
FAUC-S is the best model for the classification

under four different models

Methods Multiclass metrics Value

task.
. Precision 0.934 0
It has been observed that in cases of “severe LSTM Recall 0,05 8
loss”, the performance of FAUC-S is not as good as F 0.999 7
that of CNN. This could be because the model is Precision 0.934 3
not able to fully distinguish between “partial loss” GRU Recall 0.923 1
and “severe loss”. Additionally, CNN performs R 0.929 4
better in the class 0—3 as compared to LSTM and Precision 0.969 8
GRU. However, LSTM outperforms CNN only in CNN Recall 0.9627
cases of “complete loss”. Fi 0- 969 6
It is important to note that LSTM, GRU, and Precision 0-9775
CNN are all affected by the imbalanced distribution FAUES Rj:a“ o 2:2 :
1 0. )

of data. This results in a skewed classification per-

formance towards the majority class and poor classi-

fication performance towards the minority class. Despite this, in cases where the other three models

show low recall and F; scores, FAUC-S results in higher recall and F, scores. Overall, the perform-

ance of FAUC-S is better suited for the distribution of imbalanced data in cases of drilling fluid leaks.
To further evaluate the performance of the

6 Mix% 7 AUC 8549 41
CNN and FAUC-S in imbalanced classification, we = A B AR 0 i

Table 6 Test AUC scores of CNN and FAUC-S models
have opted to compare the test AUC score. The

FAUC-S model achieved a higher AUC score than Methods
the CNN model, as demonstrated in Table 6. This

Classification

CNN 0.98  0.97 0.97 0.99  0.97
result provides further evidence of the effectiveness

of the FAUC-S method in addressing the challenge

FAUC-S 0.99 0.99 0. 98 0.98 0. 99

of drilling fluid leakage.

4 Discussion

The distribution of data pertaining to drilling fluid leakage in oil exploration is characterized by its
complexity and imbalance, which poses significant challenges to traditional classification models. Ac-
curately classifying this data is essential for drilling teams to mitigate any potential adverse effects dur-
ing industrial operations. With this task in mind: (D To ensure successful training of subsequent mod-
els, it is imperative that filter, clean, and standardize the collected raw data. The quality of data has a
significant impact on the outcome of the models. @ To achieve comprehensive classification, it is im-
portant to consider not only accuracy but also precision, recall, F;, and other metrics. @) While tra-
ditional classification models can accomplish classification, they are often influenced by the majority
class and struggle to accurately identify minority classes. @ Selecting a deep AUC maximization

method that is specifically designed for imbalanced classification tasks can greatly enhance model per-
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formance and should be considered.

5 Conclusions

Artificial intelligence technology has a very important and wide application in oil drilling engineer-
ing, which can help drilling enterprises effectively reduce drilling costs and improve drilling efficiency.
This paper discusses the application of the latest deep AUC maximization algorithm to solve the lost
circulation risk prediction problem. The lost circulation dataset is imbalanced and the traditional meth-
ods can’t effectively and accurately identify the risk of well leakage. Directly optimizing the imbalanced
classification performance metric is helpful. FAUC-S proposed a differentiable weight function that i-
dentifies hard and easy samples, which makes hard samples with larger losses. Experimental results
show that FAUC-S has better prediction performance than the traditional method in lost circulation

risk prediction problem.
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