[1]刘 平,武梦瑶,常婉亭,等.高分散Pd/氧化石墨烯催化肉桂醛选择加氢[J].常州大学学报(自然科学版),2015,(02):19-24.[doi:10.3969/j.issn.2095-0411.2015.02.005]
 LIU Ping,WU Meng-yao,CHANG Wan-ting,et al.Selective Hydrogenation of Cinnamaldehyde over Highly-Dispersed Pd/Graphene Oxide[J].Journal of Changzhou University(Natural Science Edition),2015,(02):19-24.[doi:10.3969/j.issn.2095-0411.2015.02.005]
点击复制

高分散Pd/氧化石墨烯催化肉桂醛选择加氢()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2015年02期
页码:
19-24
栏目:
化学化工
出版日期:
2015-04-25

文章信息/Info

Title:
Selective Hydrogenation of Cinnamaldehyde over Highly-Dispersed Pd/Graphene Oxide
作者:
刘 平武梦瑶常婉亭张卫红李永昕
(江苏省绿色催化材料与技术重点实验室(常州大学),江苏 常州 213164)
Author(s):
LIU PingWU Meng-yaoCHANG Wan-tingZHANG Wei-hongLI Yong-xin
(Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology,Changzhou University,Changzhou 213164,China)
关键词:
Pd氧化石墨烯肉桂醛选择加氢
Keywords:
Pd graphene oxide cinnamaldehyde selective hydrogenation
分类号:
TQ 426.94
DOI:
10.3969/j.issn.2095-0411.2015.02.005
文献标志码:
A
摘要:
采用一种简单的方法制备氧化石墨烯负载Pd催化剂(Pd/GO),通过X射线衍射、激光显微拉曼光谱、X射线光电子能谱以及透射电子显微镜等技术对催化剂的物化性质进行表征。结果显示,Pd纳米粒子在氧化石墨烯片层上高度分散。将Pd/GO用于肉桂醛的选择加氢,考察不同反应条件对肉桂醛转化率和苯丙醛选择性的影响。与文献报道的Pd基催化剂及商业Pd/C催化剂相比,Pd/GO在接近常温和常压的条件下仍然具有较高的催化活性,其基于Pd的转换频率高达1 426.0-1,为商业Pd/C催化剂的24倍。
Abstract:
Graphene oxide supported Pd catalyst (Pd/GO) was prepared by a facile method, and characterized by X-raydiffraction, Raman spectra, X-ray photoelectron spectroscopy, and transmission electron microscopy measurements. It showed highly dispersed Pd nanoparticles on the sheets of graphene oxide. The catalytic performances of Pd/GO in the selective hydrogenation of cinnamaldehyde were investigated, and the influences of different conditions on the activity and selectivity to benzenepropanal were simultaneously tested. Compared to the Pd-based catalysts reported in the literatures and the commerial Pd/C catalyst, Pd/GO exhibited a much higher catalytic activity even at the near room temperature and atmospheric pressure. The turnover frequency based on Pd over Pd/GO reached up to 1 426.0h-1, 24 times higher than that over the commerial Pd/C.

参考文献/References:


[1]Bondan M. Fine-tuning metal clusters [J]. Nature, 1994, 372 (6504): 320.
[2] Wang H, Shu YY, Zheng MY, et al. Selective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde over SiO2 supported nickel phosphide catalysts [J]. Catalysis Letters, 2008, 124: 219-225.
[3] Zhang T, Li H, Liu J, et al. Highly active Co-B amorphous alloy catalyst with uniform nanoparticles prepared in oil-in-water microemulsion [J]. Journal of Catalysis, 2008, 259: 104-110.
[4] Gao P, Wang A Q, Wang X D, et al. Synthesis and catalytic performance of highly ordered Ru-containing mesoporous carbons for hydrogenation of cinnamaldehyde [J]. Catalysis Letters, 2008, 125: 289-295.
[5] Vu H, Goncalves F,Philippe R,et al. Bimetallic catalysis on carbon nanotubes for the selective hydrogenation of cinnamaldehyde [J]. Journal of Catalysis, 2006, 240: 18-22.
[6] Kijenski J, Winiarek P. Selective hydrogenation of α,β-unsaturated aldehydes over Pt catalysts deposited on monolayer supports [J]. Applied Catalysis A, 2000, 193: 1-4.
[7] Wu G, Wang X, Guan N, et al. Palladium on graphene as efficient catalyst for solvent-free aerobic oxidation of aromatic alcohols: Role of graphene support [J]. Applied Catalysis B, 2013, 136-137: 177-185.
[8] Li N, Du J, Xu L, et al. Facile fabrication of hollow hydridosilica nanoparticles with mesoporous shell and their dual effect in Pd nanoparticles immobilization [J]. Chemical Engineering Journal, 2014, 240: 161-168.
[9] 周慧,王进,许娟,等.LiFePO4/石墨烯复合材料的电化学性能比较[J].常州大学学报(自然科学版),2013,25(1):76-81.
[10] Hess L H, Lyuleeva A, Blaschke B M, et al. Graphene transistors with multifunctional polymer brushes for biosensing applications [J]. ACS Applied Materials & Interfaces, 2014, 6: 9705-9710.
[11] Sun Z H, Rong Z M, Wang Y. Selective hydrogenation of cinnamaldehyde over Pt nanoparticles deposited on reduced graphene oxide [J]. RSC Advances, 2014, 4: 1874-1878.
[12] Shi J J, Nie R F. Selective hydrogenation of cinnamaldehyde over reduced graphene oxide supported Pt catalyst [J]. Catalysis Communications, 2013, 41: 101-105.
[13] Zhao Y, Liu M M. Pd nanoparticles supported on ZIF-8 as an efficient heterogeneous catalyst for the selective hydrogenation of cinnamaldehyde [J]. Catalysis Communications, 2014, 57: 119-123.
[14] Kahsar K R, Johnson S, Schwartz DK, et al. Hydrogenation of cinnamaldehyde over Pd/Al2O3 catalysts modified with thiol monolayers [C]∥25th Biennial Conference of the Organic-Reactions-Catalysis-Society (ORCS).Tucson,AZ:Topics in Catalysis, 2014, 57: 1505-1511.
[15] Lv Z, Yang X, Wang E. Highly concentrated polycations-functionalized graphene nanosheets with excellent solubility and stability, and its fast, facile and controllable assembly of multiple nanoparticles [J]. Nanoscale, 2013, 5: 663-670.
[16] Chen X, Wu G, Chen J, et al. Synthesis of “clean” and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide [J]. Journal of the American Chemical Society, 2011, 133: 3693-3695.
[17] Ledoux M J, Vieira R, Pham-Huu C, et al. New catalytic phenomena on nanostructured (fibers and tubes) catalysts [J]. Journal of Catalysis, 2003, 216: 333-342.
[18] Zhao J, Xu X L, Li X N. Promotion of Sn on the Pd/AC catalyst for the selective hydrogenation of cinnamaldehyde [J]. Catalysis Communications, 2014, 43: 102-106.

备注/Memo

备注/Memo:
国家自然科学基金项目资助(21406019);江苏省自然科学基金(BK20130250);江苏省高校自然科学基金(13KJB530001);南京工业大学材料化学工程国家重点实验室开放课题(KL14-12);江苏省绿色催化材料与技术重点实验室开放课题(BM2012110)。
更新日期/Last Update: 2015-05-20