[1]戴竹青,戴 巍,杜尔登,等.芬顿氧化水中甲基叔丁基醚影响因素及机理[J].常州大学学报(自然科学版),2019,31(03):71-79.[doi:10.3969/j.issn.2095-0411.2019.03.008]
 DAI Zhuqing,DAI Wei,DU Erdeng,et al.Influencing Factors and Mechanism of Methyl Tert-Butyl Ether Oxidation by Fenton Method[J].Journal of Changzhou University(Natural Science Edition),2019,31(03):71-79.[doi:10.3969/j.issn.2095-0411.2019.03.008]
点击复制

芬顿氧化水中甲基叔丁基醚影响因素及机理()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第31卷
期数:
2019年03期
页码:
71-79
栏目:
环境科学与工程
出版日期:
2019-05-28

文章信息/Info

Title:
Influencing Factors and Mechanism of Methyl Tert-Butyl Ether Oxidation by Fenton Method
文章编号:
2095-0411(2019)03-0071-09
作者:
戴竹青1戴 巍2杜尔登1王明新1
(1.常州大学 环境与安全工程学院,江苏 常州 213164; 2.维亚生物科技(上海)有限公司,上海 201203)
Author(s):
DAI Zhuqing1 DAI Wei2 DU Erdeng1 WANG Mingxin1
(1.School of Environmental & Safety Engineering,Changzhou University,Changzhou 213164,China; 2.Viva Biotech(Shanghai)Ltd., Shanghai 201203,China)
关键词:
甲基叔丁基醚 芬顿氧化 响应面分析 降解机理
Keywords:
methyl tert-butyl ether Fenton oxidation response surface analysis degradation mechanism
分类号:
X 703
DOI:
10.3969/j.issn.2095-0411.2019.03.008
摘要:
采用芬顿氧化工艺降解水中污染物甲基叔丁基醚(MTBE),使用Box-Behnken设计方法进行实验设计,基于响应面分析考察了MTBE初始浓度、H2O2浓度、Fe2+浓度、反应时间和pH等条件对MTBE降解率的影响,对反应条件进行了优化。结果表明,在MTBE初始浓度1.1 mmol·L-1、H2O2浓度18.0 mmol·L-1、Fe2+浓度3.0 mmol·L-1、反应时间20 min、溶液pH=3.0时,MTBE降解率高达99.3%,与模型预测结果较接近,表明模型具有较好的模拟和预测能力。MTBE芬顿氧化过程检出了乙酸甲酯、叔丁醇和丙酮等中间产物,推测其主要降解过程有两种途径:一是在甲氧基上发生反应,生成甲酸叔丁酯、叔丁醇和丙酮; 二是在甲基上发生反应,生成乙酸甲酯和丙酮。
Abstract:
Fenton oxidation process is applied for methyl tert-butyl ether(MTBE)degradation. The experimental design is established by Box-Behnken design method(BBD)of response surface methodology(RSM), where influencing factors, namely MTBE initial concentration, H2O2 concentration, Fe2+ concentration, reaction time and solution pH are fitted. Optimized results show that at initial concentration 1.1 mmol·L-1, H2O2 concentration 18.0 mmol·L-1, Fe2+ concentration 3.0 mmol·L-1 reaction time 20 min and pH of 3.0, the degradation rate of MTBE reaches 99.3%, which is consistent with prediction, indicating good simulation and a forecasting model. Intermediates, namely methyl acetate, tert-butanol and acetone are detected during degradation. Thus it is speculated that there are two main pathways. One occurs on the methoxy group producing tert-butyl formate, tert-butyl alcohol and acetone; the other is on the methyl group, producing methyl acetate and acetone.

参考文献/References:

[1]松文.甲基叔丁基醚生产与发展趋势[J].精细化工原料及中间体,2011,41(2):33-38.
[2]于晓章.汽油添加剂甲基叔丁基醚(MTBE)对环境的危害性[J].生态科学,2003,22(3):257-260.
[3]王鹏,周瑞静,宋炜,等.加油站地下水甲基叔丁基醚(MTBE)的迁移模拟研究[J].城市地质,2016,11(1):10-15.
[4]王禹,薛惠中,高明,等.甲基叔丁基醚致人B淋巴母细胞系DNA损伤和氧化应激损伤的研究[J].环境与职业医学,2016,33(12):1138-1142.
[5]马俊香,陈帆,陈丽,等.甲基叔丁基醚诱导的HT-22细胞氧化应激体外研究[J].山西医科大学学报,2016,47(12):1066-1070.
[6]AXEL K,WILHELM P. Methyl tert-butyl ether(MTBE)in finisheddrinking water in Germany[J]. Environmental Pollution,2006,140(3):294-303.
[7]EWA M S,ANNA W,PIOTR S. Inuence of inorganic ions on MTBE degradation by Fenton’s reagent[J]. Journal of Hazardous Materials,2007,147(1/2):497-502.
[8]BURBANO A A, DIONYSIOU D D, SUIDAN M T. Effect of oxidant-to-substrate ratios on the degradation of MTBE with Fenton reagent[J].Water Research,2008,42(12):3225-3239.
[9]涂宁宇,刘洋,刘国光.基于均匀设计的响应面优化油页岩吸附铜离子的研究[J].环境工程,2013,31(4):48-52.
[10]张帆,张进明,肖梅,等.响应面法优化催化臭氧氧化处理邻苯二甲酸二甲酯废水的研究[J].环境污染与防治,2017,39(10):1092-1096.
[11]王利平,李祥梅,倪可,等.响应面方法优化硅藻土处理甲萘酚废水[J].环境科学与技术,2014,37(7):103-106.
[12]樊蓉,周鑫,张泽乾,等.响应面法优化电芬顿预处理焦化废水[J].太原理工大学学报,2016,47(6):717-722.
[13]刘学卿,刘武平,王新刚.铁炭微电解预处理增塑剂生产废水的研究[J].江苏科技大学学报(自然科学版),2016,30(1):94-98.
[14]石晓康,王黎.SCWO处理轮胎裂解脱硫废液的响应面法优化[J].工业水处理,2017,37(10):72-77.
[15]杜尔登,张申耀,冯欣欣,等.光催化降解内分泌干扰物双酚A的响应面分析与优化[J]. 环境工程学报,2014,8(12):5124-5128.
[16]彭明国,李志宏,周浩,等.抗生素类污染物磺胺嘧啶的UV/H2O2降解技术研究[J].常州大学学报(自然科学版),2016,28(6):95-99.
[17]DONG C D, TSAI M L, CHEN C W, et al. Heterogeneous persulfate oxidation of BTEX and MTBE using Fe3O4-CB magnetite composites and the cytotoxicity of degradation products[J]. International Biodeterioration & Biodegradation,2017,124:109-118.
[18]姜成春,庞素艳,江进,等.Fe(Ⅲ)催化过氧化氢分解影响因素分析[J].环境科学学报,2007,27(7):1197-1202.
[19]HWANG S, HULING S G, KO S. Fenton-like degradation of MTBE: effects of iron counter anion and radical scavengers[J]. Chemosphere, 2010, 78(5):1-568.
[20]林天来,刘秀峰,黄灿克.光源强度对UV活化过硫酸盐降解甲基叔丁基醚效果的影响研究[J].环境与可持续发展,2017,42(5):103-105.
[21]SOHEILA M. Degradation of methyl t-butyl ether(MTBE)by photochemical process in nanocrystalline TiO2 slurry: Mechanism, by-products and carbonate ion effect[J].Journal of Environmental Chemical Engineering,2013,1(4):1070-1078.
[22]齐健平.高级氧化法降解水中甲基叔丁基醚的研究[D].南京:南京理工大学,2013.
[23]毛柯辉.甲基叔丁基醚(MTBE)的O3和O3/H2O2降解试验[D].杭州:浙江大学,2007.

相似文献/References:

[1]张志军,覃 静,刘东飞.混凝-Fenton法处理垃圾渗滤液[J].常州大学学报(自然科学版),2011,(01):39.
 ZHANG Zhi-jun,QIN Jing,LIU Dong-fei.Treatment of Landfill Leachate by Coagulation-Fenton Process[J].Journal of Changzhou University(Natural Science Edition),2011,(03):39.

备注/Memo

备注/Memo:
收稿日期:2018-10-17。
基金项目:国家自然科学基金资助项目(41641032)。
作者简介:戴竹青(1962—),女,四川广汉人,硕士,高级工程师。E-mail: dzq@cczu.edu.cn
更新日期/Last Update: 2019-05-29