[1]ZHANG Jing,XU Linjun,YUAN Ningyi,等.Photovoltaic Molecule Containing Bi-4-Hexyl-Thienylenevinylene(BHTV)as the Conjugated Pi-Bridge for Bulk-Heterojunction Organic Solar Cells[J].常州大学学报(自然科学版),2018,30(06):17-24.[doi:10.3969/j.issn.2095-0411.2018.06.003]
 ,,et al.长共轭桥的分子材料在太阳能电池中的应用[J].Journal of Changzhou University(Natural Science Edition),2018,30(06):17-24.[doi:10.3969/j.issn.2095-0411.2018.06.003]

Photovoltaic Molecule Containing Bi-4-Hexyl-Thienylenevinylene(BHTV)as the Conjugated Pi-Bridge for Bulk-Heterojunction Organic Solar Cells()




ZHANG Jing XU Linjun YUAN Ningyi DING Jianning
(School of Materials Science & Engineering, Changzhou University, Changzhou 213164, China)
张 婧许林军袁宁一丁建宁
(常州大学 材料科学与工程学院,江苏 常州 213164)
solution-processed photovoltaic molecules organic solar cells bi-4-hexyl-thienylenevinylene π conjugated bridge
溶液可加工光伏分子 有机太阳能电池 双己基噻吩乙烯基共轭桥
O 63
Linear D-A-D molecule with bi-(4-hexylthiophen-2-yl)vinyl(BHTV)as the conjugated π bridge between triphenylamine(TPA)donor unit(D)and 2-(4H-pyran-4-ylidene)malononitrile(PM)acceptor unit(A), TPA-BHTV-PM, has been designed and synthesized. It is applied in solution-processed organic solar cells(OSCs)as the donor material. Bi-(4-hexylthiophen-2-yl)vinyl was a π bridge containing double 4-hexyl-thienylenevinylene units and introduced into the TPA-PM-containing D-A structured molecule aiming to extend the absorbance and improve the photovoltaic properties. Through the investigation of optical and electrochemical properties of the molecule, TPA-BHTV-PM exhibits broad absorption in visible region from 350 nm to 700 nm and lower highest occupied molecular orbit(HOMO)energy level, which are fundamentals as donor in organic solar cells. The OSC devices were fabricated by spin-coating the blend solution of the TPA-BHTV-PM and PC71BM. The OSC device displayed an open circuit voltage(VOC)of 0.76 V, a short circuit current density(JSC)of 6.97 mA/cm2 and a fill factor(FF)of 38.7% which leading a power conversion efficiency(PCE)of 2.10%, under the illumination of AM.1.5, 100 mW/cm2.
可溶液加工有机分子太阳能电池因为同时具有聚合物太阳能电池制备工艺简单、成本低、质量轻、可制备成柔性器件,以及有机分子蒸镀太阳能电池材料分子结构确定和器件性能容易重复的优点而受到广泛关注。设计合成了以三苯胺为给体单元、二腈基吡喃为受体单元、双己基噻吩乙烯基为共轭桥的D-A结构线型分子材料TPA-BHTV-PM,长共轭桥的引入拓宽分子材料的吸收(350~700 nm)。将分子材料与PC71BM按质量比1/3共混制备光伏器件,可得到0.76 V的开路电压,6.97 mA/cm2的短路电流,38.7%的填充因子和2.10%的能量转换效率。


[1]ROQUET S, CRAVINO A, LERICHE P, et al. Triphenylamine-thienylenevinylene hybrid systems with internal charge transfer as donor materials for heterojunction solar cells [J]. J Am Chem Soc, 2006, 128(10): 3459-3466.
[2]SHIROTA Y, KAGEYAMA H. Charge carrier transporting molecular materials and their applications in devices [J]. Chem Rev, 2007, 107(4): 953-1010.
[3]HE C, HE Q, YI Y, et al. Improving the efficiency of solution processable organic photovoltaic devices by a star-shaped molecular geometry [J]. J Mater Chem, 2008, 18(34): 4085-4090.
[4]RONCALI J. Molecular bulk heterojunctions: an emerging approachto organic solar cells [J]. Acc Chem Res, 2009, 42(11): 1719-1730.
[5]WALKERB, TOMAYO A B, DANG X D, et al. Nanoscale phase separation and high photovoltaic efficiency in solution-processed, small-molecule bulk heterojunction solar cells [J]. Adv Funct Mater, 2009, 19(19): 3063-3069.
[6]ZHAO G J, WU G L, HE C, et al. Solution-processable multiarmed organic molecules containing triphenylamine and dcm moieties: synthesis and photovoltaic properties [J]. J Phys Chem C, 2009, 113(6): 2636-2642.
[7]SHANG H, FAN H, LIU Y, et al. A solution-processable star-shaped molecule for high performance organic solar cells [J]. Adv Mater, 2011, 23(13): 1554-1557.
[8]ZHANG J, WU G L, HE C, et al. Triphenylamine-containing D-A-D molecules with(dicyanomethylene)pyran as an acceptor unit for bulk-heterojunction organic solar cells [J]. J Mater Chem, 2011, 21(11): 3768-3774.
[9]SUN Y, WELCH G C, LEONG W L, et al. Solution-processed small-molecule solar cells with 6.7%efficiency [J]. Nature Mater, 2012, 11(1): 44-48.
[10]ZHOU J, WAN X, LIU Y, et al. Small molecules based on benzo[1,2-b:4,5-b’]dithiophene unit for high-performance solution-processed organic solar cells [J]. J Am Chem Soc, 2012, 134(39): 16345-16351.
[11]SHEN S, JIANG P, HE C, et al. Solution-processable organic molecule photovoltaic materials with bithienyl-benzodithiophene central unit and indenedione end groups [J]. Chem Mater, 2013, 25(11): 2274-2281.
[12]DENG D, ZHANG Y, YUAN L, et al. Effects of shortened alkyl chains on solution-processable small molecules with oxo-alkylated nitrile end-capped acceptors for high-performance organic solar cells [J]. Adv Energy Mater, 2014, 4(17): 1400538.
[13]MIN J, LUPONOSOV Y N, GERL A, et al. Alkyl chain engineering of solution-processable star-shaped molecules for high-performance organic solar cells [J]. Adv Energy Mater, 2014, 4(5): 1301234.
[14]CUI C H, GUO X, MIN J, et al. High-performance organic solar cells based on a small molecule with alkylthio-thienyl-conjugated side chains without extra treatments [J]. Adv Mater, 2015, 27(45): 7469-7475.
[15]SUN D, MENG D, CAI Y, et al. Non-fullerene-acceptor-based bulk-heterojunction organic solar cells with efficiencyover 7% [J]. J Am Chem Soc, 2015, 137(34): 11156-11162.
[16]SUN K, XIAO Z Y, LU S R, et al. A molecular nematic liquid crystalline material for high-performance organic photovoltaics [J]. Nat Commun, 2015, 6: 6013.
[17]YUAN L, ZHAO Y, ZHANG J, et al. Oligomeric donor material for high-efficiency organic solar cells: breaking down a polymer [J]. Adv Mater, 2015, 27(28): 4229-4233.
[18]MIN J, CUI C H, HEUMUELLER T, et al. Side-chain engineering for enhancing the properties of small molecule solar cells: A trade-off beyond efficiency [J]. Adv Energy Mater, 2016, 6(14): 1600515.
[19]YANG L, ZHANG S, HE C, et al. New wide band gap donor for efficient fullerene-free all-small-molecule organic solar cells [J]. J Am Chem Soc, 2017, 139(5): 1958-1966.
[20]BARAN D, ASHRAF R S, HANIFI D A, et al. Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells [J]. Nature Mater, 2016, 16(3): 363-369.
[21]BIN H, ZHANG ZG, GAO L, et al. Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2d-conjugated polymers reach 9.5% efficiency [J]. J Am Chem Soc, 2016, 138(13): 4657-4664.
[22]BIN H J, GAO L, ZHANG Z G, et al. 11.4% efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2d-conjugated polymer as donor [J]. Nat Commun, 2016(7): 13651.
[23]DENG D, ZHANG Y J, ZHANG J Q, et al. Fluorination-enabled optimal morphology leads toover 11% efficiency for inverted small-molecule organic solar cells [J]. Nat Commun, 2016(7): 13740.
[24]GAO L, ZHANG Z G, BIN H J, et al. High-efficiency nonfullerene polymer solar cells with medium bandgap polymer donor and narrow bandgap organicsemiconductor acceptor [J]. Adv Mater, 2016, 28(37): 8288-8295.
[25]YANG Y K, ZHANG Z G, BIN H J, et al. Side-chain isomerization on an n-type organic semiconductor itic acceptor makes 11.77% high efficiency polymer solar cells [J]. J Am Chem Soc, 2016, 138(45): 15011-15018.
[26]LI M M, GAO K, WAN X J, et al. Solution-processed organic tandem solar cells with power conversion efficiencies >12% [J]. Nat Photonics, 2016,11(2):85-90.
[27]ZHANG J, ZHU X W, HE C, et al. Impact of the alkyl side chain position on the photovoltaic properties of solution-processable organic molecule donor materials [J]. J Mater Chem A, 2016, 4(30): 11747-11753.
[28]LI Z F, DONG Q F, LI Y W, et al. Design and synthesis of solution processable small molecules towards highphotovoltaic performance [J]. J Mater Chem, 2011, 21(7): 2159-2168.
[29]WU G L, ZHAO G J, HE C, et al. Synthesis and photovoltaic properties of a star-shaped molecule with triphenylamine as core and benzo[1,2,5]thiadiazol vinylene as arms [J]. Sol Energy Mater Sol Cells, 2009, 93(1): 108-113.
[30]XUE L L, HE J T, GU X, et al. Efficient bulk-heterojunction solar cells based on a symmetrical D-π-A-π-D organic dye molecule [J]. J Phys Chem C, 2009, 113(29): 12911-12917.
[31]LI Y F, CAO Y, GAO J, et al. Electrochemical properties of luminescent polymers and polymer light-emitting electrochemical cells [J]. Synth Met, 1999, 99(3): 243-248.
[32]FAN Q P, SU W Y, GUO X, et al. A new polythiophene derivative for high efficiency polymer solarcells with pce over 9% [J]. Adv Energy Mater, 2016, 6(14):1600430.
[33]HUO L J, ZHANG S Q, GUO X, et al. Replacing alkoxy groups with alkylthienyl groups: A feasible approach to improve the properties of photovoltaic polymers [J]. Angew Chem Int Ed, 2011, 50(41): 9697-9702.
[34]CHEN H Y, HOU J H, ZHANG S Q, et al. Polymer solar cells with enhanced open-circuit voltage and efficiency [J]. Nature Photon, 2009, 3(11): 649-653.
[35]THOMPSON B C, FRECHET J M J. Organic photovoltaics-polymer-fullerene composite solar cells [J]. Angew Chem Int Ed, 2008, 47(1): 58-77.
[36]KOOISTRA F B, MIHAILETCHI V D, POPESCU L M, et al. NewC-84 derivative and its application in a bulk heterojunction solar cell [J]. Chem Mater, 2006, 18(13): 3068-3073.
[37]HE Y J, LI Y F. Fullerene derivative acceptors for high performance polymer solar cells [J]. Phys Chem Chem Phys, 2011, 13(6): 1970-1983.


作者简介:张婧(1984—),女,河北唐山人,博士,讲师。E-mail: zhangjing1984@cczu.edu.cn
更新日期/Last Update: 2018-10-28