[1]纪 虹,张 高,赵恭宇,等.长输天然气管道泄漏扩散影响范围的数值模拟研究[J].常州大学学报(自然科学版),2018,30(06):31-40.[doi:10.3969/j.issn.2095-0411.2018.06.005]
 JI Hong,ZHANG Gao,ZHAO Gongyu,et al.Numerical Simulation on Influence Range of Leakage and Diffusion of Long-Distance Natural Gas Pipelines[J].Journal of Changzhou University(Natural Science Edition),2018,30(06):31-40.[doi:10.3969/j.issn.2095-0411.2018.06.005]
点击复制

长输天然气管道泄漏扩散影响范围的数值模拟研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
30
期数:
2018年06期
页码:
31-40
栏目:
石油与天然气工程
出版日期:
2018-11-28

文章信息/Info

Title:
Numerical Simulation on Influence Range of Leakage and Diffusion of Long-Distance Natural Gas Pipelines
作者:
纪 虹12张 高12赵恭宇1王德起12黄维秋12
(1.江苏省油气储运技术重点实验室(常州大学),江苏 常州 213164; 2.常州大学 石油工程学院,江苏 常州 213164)
Author(s):
JI Hong12 ZHANG Gao12 ZHAO Gongyu1 WANG Deqi12 HUANG Weiqiu12
(1. Jiangsu Key Laboratory of Oil & Gas Storage and Transportation Technology, Changzhou University, Changzhou 213164, China; 2. School of Petroleum Engineering, Changzhou University, Changzhou 213164, China)
关键词:
天然气管道 泄漏范围 数值模拟 多因素耦合分析
Keywords:
natural gas pipelines leakage range numerical simulation multi-factor coupling analysis
分类号:
TE 88
DOI:
10.3969/j.issn.2095-0411.2018.06.005
文献标志码:
A
摘要:
长输天然气管道泄漏可能引发火灾爆炸等事故,天然气泄漏的范围决定了灾害的影响程度。因此,基于组分传输模型,建立了长输天然气管道泄露扩散数值模型并选取风速、泄漏孔径和大气温度3个因素对泄漏影响范围进行单因素和多因素耦合分析。结果表明:随着风速的增大,天然气喷射形成的射流与水平方向的夹角不断减小,天然气射流扩散的高度在逐渐降低,泄漏扩散面积也不断减小,单位面积甲烷体积分数在增大。随着泄漏孔径的增大,天然气的泄漏量在增大,天然气泄漏所形成的射流的高度和宽度都在逐渐增大,射流的范围逐渐增大,且高度方向的增长要大于水平方向的增长。大气温度对泄漏扩散无太大影响。泄漏孔径、风速和大气温度对泄漏扩散范围的影响程度依次减弱。
Abstract:
Leakage of long-distance natural gas pipelines may cause accidents such as fire and explosion, and the extent of natural gas leakage determines the extent of the impact of the disaster. Therefore, based on the species transport model, a numerical model for leakage and diffusion of long-distance natural gas pipelines was established, and selecting three factors of wind speed, leakage aperture and atmospheric temperature, the single-factor and multi-factor coupling effects on the leakage range were analyzed. The results show that with the increase of wind speed, the angle between the jet formed by natural gas injection and the horizontal direction is decreasing, and the height of natural gas jet diffusion is gradually decreasing, and the leakage diffusion area is also decreasing; the methane volume fraction per unit area is increasing. As the leakage pore size increases, the leakage of natural gas increases, and the height and width of the jet formed by natural gas leakage are gradually increasing, and the range of the jet is gradually increasing, and the growth in the height direction is greater than that in the horizontal direction. Atmospheric temperature does not have much effect on leakage diffusion. The effects of leakage aperture, wind speed and atmospheric temperature on the extent of leakage diffusion is reduced successively.

参考文献/References:


[1] 黄维和, 郑洪龙, 王婷. 我国油气管道建设运行管理技术及发展展望[J]. 油气储运, 2014, 33(12): 1259-1262.
[2]狄彦, 帅健, 王晓霖,等. 油气管道事故原因分析及分类方法研究[J]. 中国安全科学学报, 2013, 23(7): 109-115.
[3]赵汉青. 我国油气管道的事故成因及环境预防措施[J]. 油气储运, 2015, 34(4): 368-372.
[4]MAJID Z A, MOHSIN R, YAACOB Z, et al. Failure analysis of natural gas pipes[J]. Engineering Failure Analysis, 2010, 17(4): 818-837.
[5]KHALIL Y F. A probabilistic visual-flowcharting-based model for consequence assessment of fire and explosion events involving leaks of flammable gases[J]. Journal of Loss Prevention in the Process Industries, 2017, 50(1): 190-204.
[6]王大庆, 高惠临. 天然气管线泄漏扩散及危害区域分析[J]. 天然气工业, 2006(7): 120-122, 162.
[7]BARIHA N, MISHRA I M, SRIVASTAVA V C. Hazard analysis of failure of natural gas and petroleum gas pipelines[J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 217-226.
[8]纪虹, 杨克, 黄维秋,等. 超细水雾协同甲烷氧化菌降解与抑制甲烷爆炸的实验研究[J]. 化工学报, 2017,68(11): 4461-4468.
[9]武伟强, 赵会军, 王克华,等. 次声波法输气管道泄漏检测系统的信号处理[J]. 油气储运, 2012, 31(5): 376-378, 407-408.
[10]刘翠伟, 李雪洁, 李玉星, 等 基于音波法的输气管道泄漏检测与定位[J]. 化工学报, 2014, 65(11): 4633-4642.
[11]孟令雅, 李玉星, 宋立群,等. 输气管道泄漏音波传播特性及监测定位[J]. 天然气工业, 2010, 30(11): 74-79,123.
[12]李柯. 天然气长输管道泄漏工况数值模拟[J]. 油气储运, 2014, 33(1): 20-27.
[13]王翠平. 长输天然气管道泄漏模拟与风险控制措施研究[D]. 青岛:中国石油大学(华东), 2014.
[14]李朝阳, 马贵阳. 埋地与架空输气管道泄漏数值模拟对比分析[J]. 天然气工业, 2011, 31(7): 90-93, 113.
[15]EBRAHIMI-MOGHADAM A, FARZANEH-GORD M, DEYMI-DASHTEBAYAZ M. Correlations for estimating natural gas leakage from above-ground and buried urban distribution pipelines[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 185-196.
[16]刘雪东, 刘佳阳, 朱小林,等. 结构参数对拉伐尔喷管空化特性影响的数值模拟[J]. 常州大学学报(自然科学版), 2014, 26(2): 43-47.
[17]陶进峰, 徐学慧. 平焰燃烧三维热态速度场的数值模拟[J]. 常州大学学报(自然科学版), 2012, 24(1): 33-36.
[18]EGIG. Gas pipeline incidents, 10th report of the European gas pipeline incident data group[R]. Groningen: EGIG, 2018.
[19]程淑娟. 天然气管道小孔泄露扩散规律研究[D].重庆:西南石油大学, 2014.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金资助项目(51574044); 江苏省自然科学基金资助项目(BK20150269); 常州大学高层次人才引进启动基金(ZMF14020055。
作者简介:纪虹(1986—),女,天津人,博士,讲师。E-mail: jihong@cczu.edu.cn
更新日期/Last Update: 2018-10-28