[1]邹定宇,王世飞.一类病毒动力学模型的全局渐近稳定性分析[J].常州大学学报(自然科学版),2011,(01):59-62.
 ZOU Ding-yu,WANG Shi-fei.Global Properties of Virus Dynamics Models[J].Journal of Changzhou University(Natural Science Edition),2011,(01):59-62.
点击复制

一类病毒动力学模型的全局渐近稳定性分析()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2011年01期
页码:
59-62
栏目:
数理科学
出版日期:
2011-01-01

文章信息/Info

Title:
Global Properties of Virus Dynamics Models
作者:
邹定宇王世飞
常州大学 数理学院,江苏 常州 213164
Author(s):
ZOU Ding-yuWANG Shi-fei
School of Mathematics and Physics,Changzhou University,Changzhou 213164,China
关键词:
潜伏细胞年龄 染病细胞年龄 阈值 平衡点 Lyapunov 函数 全局渐近稳定性
Keywords:
age-of-expose age-of-infection threshold steady states Lyapunov function globally and asymptotically stable
分类号:
O 175.1
文献标志码:
A
摘要:
建立和研究了具有潜伏细胞年龄结构,染病细胞年龄结构及分布时滞的病毒动力学模型。得到了每个模型的基本再生数,对3个模型通过建立适当的Lyapunov函数, 证明了当基本再生数小于1时,无病平衡点全局渐近稳定,疾病消除。当基本再生数大于1时, 正平衡点全局渐近稳定,疾病持续。
Abstract:
Virus dynamics models with age-of-infection,age-of-exposeand distributed intracellular delay were discussed. The basic reproduction number was obtained. By constructing Lyapunov functions, it was proved that the disease-free equilibrium was globally and asymptotically stable for three models.Ifthe basic reproduction number was less than one, the disease was cleared. The endemic equilibrium was globally and asymptotically stable for three models, if the basic reproduction number was larger than one,and the disease persists.

参考文献/References:

[1]Rong Libin,Feng Zhilan,Alan S Perelson.Amathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy[J]. SIAM J Appl Math,2007,67(3):731-756.
[2]Feng Z,Curtis J,Minchella D J. The influence of drug treatment on the maintenance of schistosome genetic diversity[J].J Math Biol,2001,43:52-68.
[3]Feng Z,Iannelli M,Milner F A. A two-strain tuberculosis model with age of infection[J].SIAM J Appl Math, 2002,62:1 634-1 656.
[4]Feng Z,Rong L. The influence of anti-viral drug therapy on the evolution ofHIV-1 pathogens in Disease Evolution: Models, Concepts, and Data Analyses[J].AMS,2006,161-179.
[5]Gilchrist M A,Coombs D,Perelson A S. Optimizing within-host viral fitness:Infected cell lifespan and virion production rate[J].J Theoret Biol,2004,229:281-288.
[6]Li M Y,Shuai Z,Wang C. Global stability of multi-group epidemic models withdis-tributed delays[J].J Math Anal Appl, 2010, 361:38-47.
[7]McCluskey C C. Global stability for an SEIR epidemiological model with varying infectivityand infinite delay[J]. Math Biosci and Eng, 2009, 6: 603-610.
[8]McCluskey C C.Complete global stability for an SIR epidemic model with delay- Distributed or discrete[J]. Nonlinear Anal, 2010, 11: 55-59.
[9]Bonhoeffer S,May R M,Shaw G M. Virus dynamics and drug therapy[J]. Proc Natl Acad Sci,1999,94:6 971-6 976.
[10]Andrei Koobeinikov. Global Properties of Basic Virus Dynamics Models[J].Bulletin of Mathematical Biology, 2004,66:879-883.
[11]Hale J,Verduyn Lunel S. Introduction to Functional Differential Equations[M].New York:Springer-Verlag,1993.

备注/Memo

备注/Memo:
作者简介:邹定宇(1978-),男,江苏常州人,硕士。
更新日期/Last Update: 2011-01-01