[1]邹定宇.周期药物疗效和潜伏细胞作用的病毒动力学模型分析[J].常州大学学报(自然科学版),2011,(04):75-78.
 ZOU Ding-yu.Dynamics of A Virus Infection Model with Periodic Drug Efficacy and Exposed Cells Response[J].Journal of Changzhou University(Natural Science Edition),2011,(04):75-78.
点击复制

周期药物疗效和潜伏细胞作用的病毒动力学模型分析()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2011年04期
页码:
75-78
栏目:
出版日期:
2011-09-30

文章信息/Info

Title:
Dynamics of A Virus Infection Model with Periodic Drug Efficacy and Exposed Cells Response
作者:
邹定宇
常州大学 数理学院,江苏 常州 213164
Author(s):
ZOU Ding-yu
School of Physics and Mathematics, Changzhou University, Changzhou 213164, China
关键词:
周期药物疗效一致持久基本再生数病毒动力学模型
Keywords:
periodic drug efficacy uniform persistence the basic reproduction number virus infection model
分类号:
O 1751
文献标志码:
A
摘要:
建立和研究了周期药物疗效和潜伏细胞作用的病毒动力学模型,证明了当时,无病平衡点全局渐近稳定,当时,疾病一致持久,且系统存在正的周期解。并用Matlab软件对所得的结果进行了仿真验证。
Abstract:
A virus dynamics model with periodic drug efficacy and exposed cells response was discussed. It was proved that, if, the disease-free equilibrium was global asymptotically stable,if , the disease was uniform persistent. Numerical simulations which support the theoretical analysis were also given by using Matlab.

参考文献/References:

[1] Perelson A S, Nelson P W. Mathematical analysis of HIV-1 dynamics in vivo[J]. SIAM Rev, 1999, 41: 3–44.
[2]Ganem D, Prince A M. Hepatitis B. virus infection—natural history and clinical consequences[J]. N Engl J Med, 2004, 350: 1 118–1 129.
[3]Richman D D. Human Immunodeficiency Virus[M].London: International Medical Press, 2004.
[4]Neumann A U, Lam N P. Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy[J]. Science, 1998, 282 : 103-107.
[5]Youping Yang, Yanni Xiao. Threshold dynamics for an HIV model in periodic environments[J]. J Math Anal Appl, 2010, 361: 59-68.
[6]A Korobeinikov. Global properties of basic virus dynamics models[J]. Bull Math Biol, 2004, 66 (4): 879-883.
[7] F Zhang, X Q Zhao. A periodic epidemic model in a patchy environment[J]. J Math Anal Appl, 2007, 325: 496-516.
[8]Wendi Wang, Xiao-Qiang Zhao. Threshold dynamics for compartmental epidemic models in periodic environments[J]. J Dynam Differential Equations,2008, 20 (3): 699–717.
[9]X Q Zhao. Dynamical Systems in Population Biology[M]. New York:Springer-Verlag, 2003.

备注/Memo

备注/Memo:
基金项目:常州大学基础学科基金资助( JS201005) 作者简介:邹定宇(1978—),男,江苏武进人,硕士,讲师,主要从事生物数学与半群理论研究。
更新日期/Last Update: 2011-09-30