[1]杨廷力,沈惠平,刘安心.机构自由度公式的统一形式及其物理内涵[J].常州大学学报(自然科学版),2013,(04):1-8.[doi:10.3969/j.issn.2095-0411.2013.04.001]
 YANG Tingli,SHEN Hui ping,LIU An xin.General form and Physical Meaning of the DOF Formula[J].Journal of Changzhou University(Natural Science Edition),2013,(04):1-8.[doi:10.3969/j.issn.2095-0411.2013.04.001]
点击复制

机构自由度公式的统一形式及其物理内涵()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2013年04期
页码:
1-8
栏目:
出版日期:
2013-09-30

文章信息/Info

Title:
General form and Physical Meaning of the DOF Formula
作者:
杨廷力沈惠平刘安心
1常州大学 机械工程学院,江苏 常州 213016;2.中国石化金陵石化公司,江苏 南京 210000;3.解放军理工大学 野战工程学院,江苏 南京,210007
Author(s):
YANG TingliSHEN Hui pingLIU An xin
1.School of Mechanical Engineering,Changzhou University,Changzhou 213016,China;2.Sinopec Jinglin Petrochemical Corp, Nanjing 210000,China; 3.Institute of Field Engineering,PLA University of Science and Technology,Nanjing 210007,China
关键词:
并联机构拓扑结构自由度方位特征约束分析运动分析
Keywords:
parallel mechanism topological structure degree of freedom (DOF) position and orientation characteristics (POC) constraint analysis kinematic analysis
分类号:
TH 11
DOI:
10.3969/j.issn.2095-0411.2013.04.001
文献标志码:
A
摘要:
 由于并联机器人机构的发展,最近十多年,提出了6种新的主要的机构自由度(DOF)公式。在简述这6种公式的结构与特点的基础上给出了这些公式的统一形式及其物理意义,以及DOF公式取得进展的原因;对基于约束螺旋系的统一形式的DOF公式,提出了DOF计算方法的改进建议,并给出两个实例;而基于运动分析的统一形式的DOF公式,只适用于不含非独立运动元素的机构,仅是具有一般性的基于方位特征集的DOF公式的特例。
Abstract:
Along with the development of robot mechanism research, 6 new DOF formulas have been proposed in the last decade. After analyzing their structures and characteristics, a Unified form that is able to cover all these 6 formulas is given and the correspondi

参考文献/References:

[1]Gogu,Grigore.Mobility of mechanisms: a critical review[J].Mechanism and Machine Theory,2005,40(9): 1068-1097.
[2] Moroskine Y F.General analysis of the theory of mechanisms[M].Moscow: Akad.Nauk, SSSR,1954.
[3] Kutzbach K.Mechanische leitungsverzweigung, ihre gesetze und anwendungen[J].Maschinenbau, 1929 (8):710-716.
[4] Zhang Q X.Study on structural theory of spatial mechanisms[J]Chinese Journal of Mechanical Engineering, 1962, 9 (1): 7-32.
[5] Freudenstein F,Alizade R.On the degree-of-freedom of mechanisms with variable general constraint[C] // Fourth World Congress on the Theory of Machines and Mechanisms.London:Mech Eng Publ Ltd,1975:51-56.
[6] Dai J S,Huang Z,Lipkin H.Mobility of overconstrained parallel mechanisms[J].ASME Journal of Mechanical Design,2005, 128: 220-229.
[7] Li Q C, Huang Z.Mobility analysis of a novel 3-5R parallel mechanism family[J].ASME Journal of Mechanical Design,2004,126: 79-82.
[8] 黄真, 赵永生, 赵铁石,等 高等空间机构学[M].北京: 高等教育出版社, 2006.
[9] 黄真, 刘婧芳,李艳文论机构自由度-寻找了150年的自由度通用公式[M].北京:科学出版社,2011.
[10] Kong X W, Gosselin C M.Mobility analysis of parallel mechanisms based on screw theory and the concept of equivalent serial kinematic chain[C] // Proc of the 2005 ASME Design Engineering Technical Conf. & Computers and Information in Engineering Conf.New York:American Society of Mechanical Engineers,2005:911-920.
[11] Gogu G. Mobility and spatiality of parallel robots revisited via theory of linear transformations[J]. European J of Mechanics A/Solid, 2005,24: 690-711.
[12] Rico J M,Ravani B.On mobility analysis of linkages using group theory[J].ASME J Mech Des,2003,125: 70-80.
[13] Rico J M,Aguilera L D,Gallardo J,et al. A more general mobility criterion for parallel platforms[J].Journal of Mechanical Design, Transactions of the ASME, 2006,128(1): 207-219.
[14] Yang T L,Sun D J.General formula of degree of freedom for parallel mechanisms and its application[C] // Proc of ASME 2006 Mechanisms Conference.New York:American Society of Mechanical Engineers,2006:10.
[15] Yang T L,Sun D J.A general formula of degree of freedom for parallel mechanisms[C] // Proc of the ASME 32th Mechanisms and Robots Conference.New York:American Society of Mechanical Engineers,2008:1379-1390.
[16] Yang T L,Sun D J.A general DOF formula for parallel mechanisms and multi-loop spatial mechanisms[J].ASME Journal of Mechanisms and Robotics,2012,4(1): 1-17.
[17] Yang T L,Liu A X, Luo Y F,et al.Position and orientation characteristic equation for topological design of robot mechanisms[J].ASME Journal of Mechanical Design,2009,131(2): 1-17.
[18] 杨廷力,刘安心,罗玉峰,等机器人机构拓扑结构设计[M]北京:科学出版社,2012:75-99.
[19] Yang T L, Liu A X, Shen H P,et al.On the correctness and strictness of the position and orientation characteristic equation for topological structure design of robot mechanisms[J].ASME Journal of Mechanical Design,2013(5): 1-18.
[20] Davidson J K, Hunt K H.Robots and screw theory: application of kinematics and statics to robotics[M].London: Oxford University Press,2004:60-70.

相似文献/References:

[1]尹洪波,朱帅帅,邓嘉鸣,等.新型并联运动贴装机器人的研制[J].常州大学学报(自然科学版),2013,(04):25.[doi:10.3969/j.issn.2095-0411.2013.04.005]
 YIN Hong bo,ZHU Shuai shuai,DENG Jia,et al.Development of the New Parallel Movement Mount Robot[J].Journal of Changzhou University(Natural Science Edition),2013,(04):25.[doi:10.3969/j.issn.2095-0411.2013.04.005]
[2]张会芳,沈惠平,杨廷力,等.一种新型并联运动振动筛主机构及其运动学分析[J].常州大学学报(自然科学版),2007,(02):38.
 ZHANG Hui - fang,SHEN Hui - ping,YANG Ting - li,et al.Novel Main Mechanism of Parallel Kinematic Sieve and Kinematics[J].Journal of Changzhou University(Natural Science Edition),2007,(04):38.
[3]沈惠平,马正华,金?? 琼,等.一种新型解耦二腿三维平移并联机构及其运动分析[J].常州大学学报(自然科学版),2003,(03):44.
 SHEN Hui- ping,MA Zheng- hua,JIN Qiong,et al.A N ov el Decoupled 2- Lim b 3- T ranslat ion Parallel Mechanism and its K inem at ic Analy sis[J].Journal of Changzhou University(Natural Science Edition),2003,(04):44.
[4]封红旗,符彦惟,王娟琳,等.校园网络拓扑监控研究[J].常州大学学报(自然科学版),2002,(02):43.
 FENG Hong -qi,FU Yan -w ei,WANG Juan -lin,et al.The Research on Campus Topology Monitor[J].Journal of Changzhou University(Natural Science Edition),2002,(04):43.
[5]朱伟,耿林,许兆棠,等.3DOF弹性并联机构逆向运动和力学特性分析[J].常州大学学报(自然科学版),2016,(05):54.[doi:10.3969/j.issn.2095-0411.2016.05.009]
 ZHU Wei,GENG Lin,XU Zhaotang,et al.Analysis on Inverse Kinemics and Mechanical Properties of a Three DOF Flexible Parallel Mechanism[J].Journal of Changzhou University(Natural Science Edition),2016,(04):54.[doi:10.3969/j.issn.2095-0411.2016.05.009]
[6]张震,沈惠平,尹洪贺,等.一种新型3T1R并联机构的设计及其运动学分析[J].常州大学学报(自然科学版),2017,(05):57.[doi:10.3969/j.issn.2095-0411.2017.05.009]
 ZHANG Zhen,SHEN Huiping,YIN Honghe,et al.Design and Kinematics Analysis of a Novel 3T1R Parallel Mechanism[J].Journal of Changzhou University(Natural Science Edition),2017,(04):57.[doi:10.3969/j.issn.2095-0411.2017.05.009]
[7]邓嘉鸣,邵国为,李家宇,等.一种新型低耦合并联操作手及其运动学[J].常州大学学报(自然科学版),2018,30(03):50.[doi:10.3969/j.issn.2095-0411.2018.03.006]
 DENG Jiaming,SHAO Guowei,LI Jiayu,et al.A Novel Type Parallel Manipulator with Lower Coupling-Degree and Its Kinematics[J].Journal of Changzhou University(Natural Science Edition),2018,30(04):50.[doi:10.3969/j.issn.2095-0411.2018.03.006]
[8]朱 伟,刘晓飞,李寒冰,等.一种新型2T2R并联机构及其运动性能分析[J].常州大学学报(自然科学版),2019,31(02):44.[doi:10.3969/j.issn.2095-0411.2019.02.006]
 ZHU Wei,LIU Xiaofei,LI Hanbing,et al.A Novel 2T2R Parallel Mechanism and Its Kinematic Analysis[J].Journal of Changzhou University(Natural Science Edition),2019,31(04):44.[doi:10.3969/j.issn.2095-0411.2019.02.006]
[9]尤晶晶,王 恪,沈惠平.具有解析式位置正解的三自由度并联机构逆动力学求解[J].常州大学学报(自然科学版),2021,33(04):83.[doi:10.3969/j.issn.2095-0411.2021.04.011]
 YOU Jingjing,WANG Ke,SHEN Huiping.Inverse Dynamics of a 3-DOF Parallel Mechanism with Analytical Forward Kinematics[J].Journal of Changzhou University(Natural Science Edition),2021,33(04):83.[doi:10.3969/j.issn.2095-0411.2021.04.011]
[10]汤耀,沈惠平,曾博雄,等.一种零耦合度及部分运动解耦的空间2T1R并联机构动力学建模[J].常州大学学报(自然科学版),2022,34(01):48.[doi:10.3969/j.issn.2095-0411.2022.01.006]
 TANG Yao,SHEN Huiping,ZENG Boxiong,et al.Dynamics Modeling of a Spatial 2T1R Parallel Mechanism with Zero Coupling Degree and Partial Motion Decoupling[J].Journal of Changzhou University(Natural Science Edition),2022,34(04):48.[doi:10.3969/j.issn.2095-0411.2022.01.006]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金资助项目(51075045,51375062) 作者简介:杨廷力(1940-),男,河南南阳人,教授,博士生导师
更新日期/Last Update: 2013-09-30