参考文献/References:
[1]Gogu,Grigore.Mobility of mechanisms: a critical review[J].Mechanism and Machine Theory,2005,40(9): 1068-1097.
[2] Moroskine Y F.General analysis of the theory of mechanisms[M].Moscow: Akad.Nauk, SSSR,1954.
[3] Kutzbach K.Mechanische leitungsverzweigung, ihre gesetze und anwendungen[J].Maschinenbau, 1929 (8):710-716.
[4] Zhang Q X.Study on structural theory of spatial mechanisms[J]Chinese Journal of Mechanical Engineering, 1962, 9 (1): 7-32.
[5] Freudenstein F,Alizade R.On the degree-of-freedom of mechanisms with variable general constraint[C] // Fourth World Congress on the Theory of Machines and Mechanisms.London:Mech Eng Publ Ltd,1975:51-56.
[6] Dai J S,Huang Z,Lipkin H.Mobility of overconstrained parallel mechanisms[J].ASME Journal of Mechanical Design,2005, 128: 220-229.
[7] Li Q C, Huang Z.Mobility analysis of a novel 3-5R parallel mechanism family[J].ASME Journal of Mechanical Design,2004,126: 79-82.
[8] 黄真, 赵永生, 赵铁石,等 高等空间机构学[M].北京: 高等教育出版社, 2006.
[9] 黄真, 刘婧芳,李艳文论机构自由度-寻找了150年的自由度通用公式[M].北京:科学出版社,2011.
[10] Kong X W, Gosselin C M.Mobility analysis of parallel mechanisms based on screw theory and the concept of equivalent serial kinematic chain[C] // Proc of the 2005 ASME Design Engineering Technical Conf. & Computers and Information in Engineering Conf.New York:American Society of Mechanical Engineers,2005:911-920.
[11] Gogu G. Mobility and spatiality of parallel robots revisited via theory of linear transformations[J]. European J of Mechanics A/Solid, 2005,24: 690-711.
[12] Rico J M,Ravani B.On mobility analysis of linkages using group theory[J].ASME J Mech Des,2003,125: 70-80.
[13] Rico J M,Aguilera L D,Gallardo J,et al. A more general mobility criterion for parallel platforms[J].Journal of Mechanical Design, Transactions of the ASME, 2006,128(1): 207-219.
[14] Yang T L,Sun D J.General formula of degree of freedom for parallel mechanisms and its application[C] // Proc of ASME 2006 Mechanisms Conference.New York:American Society of Mechanical Engineers,2006:10.
[15] Yang T L,Sun D J.A general formula of degree of freedom for parallel mechanisms[C] // Proc of the ASME 32th Mechanisms and Robots Conference.New York:American Society of Mechanical Engineers,2008:1379-1390.
[16] Yang T L,Sun D J.A general DOF formula for parallel mechanisms and multi-loop spatial mechanisms[J].ASME Journal of Mechanisms and Robotics,2012,4(1): 1-17.
[17] Yang T L,Liu A X, Luo Y F,et al.Position and orientation characteristic equation for topological design of robot mechanisms[J].ASME Journal of Mechanical Design,2009,131(2): 1-17.
[18] 杨廷力,刘安心,罗玉峰,等机器人机构拓扑结构设计[M]北京:科学出版社,2012:75-99.
[19] Yang T L, Liu A X, Shen H P,et al.On the correctness and strictness of the position and orientation characteristic equation for topological structure design of robot mechanisms[J].ASME Journal of Mechanical Design,2013(5): 1-18.
[20] Davidson J K, Hunt K H.Robots and screw theory: application of kinematics and statics to robotics[M].London: Oxford University Press,2004:60-70.
相似文献/References:
[1]尹洪波,朱帅帅,邓嘉鸣,等.新型并联运动贴装机器人的研制[J].常州大学学报(自然科学版),2013,(04):25.[doi:10.3969/j.issn.2095-0411.2013.04.005]
YIN Hong bo,ZHU Shuai shuai,DENG Jia,et al.Development of the New Parallel Movement Mount Robot[J].Journal of Changzhou University(Natural Science Edition),2013,(04):25.[doi:10.3969/j.issn.2095-0411.2013.04.005]
[2]张会芳,沈惠平,杨廷力,等.一种新型并联运动振动筛主机构及其运动学分析[J].常州大学学报(自然科学版),2007,(02):38.
ZHANG Hui - fang,SHEN Hui - ping,YANG Ting - li,et al.Novel Main Mechanism of Parallel Kinematic Sieve and Kinematics[J].Journal of Changzhou University(Natural Science Edition),2007,(04):38.
[3]沈惠平,马正华,金?? 琼,等.一种新型解耦二腿三维平移并联机构及其运动分析[J].常州大学学报(自然科学版),2003,(03):44.
SHEN Hui- ping,MA Zheng- hua,JIN Qiong,et al.A N ov el Decoupled 2- Lim b 3- T ranslat ion Parallel Mechanism and
its K inem at ic Analy sis[J].Journal of Changzhou University(Natural Science Edition),2003,(04):44.
[4]封红旗,符彦惟,王娟琳,等.校园网络拓扑监控研究[J].常州大学学报(自然科学版),2002,(02):43.
FENG Hong -qi,FU Yan -w ei,WANG Juan -lin,et al.The Research on Campus Topology Monitor[J].Journal of Changzhou University(Natural Science Edition),2002,(04):43.
[5]朱伟,耿林,许兆棠,等.3DOF弹性并联机构逆向运动和力学特性分析[J].常州大学学报(自然科学版),2016,(05):54.[doi:10.3969/j.issn.2095-0411.2016.05.009]
ZHU Wei,GENG Lin,XU Zhaotang,et al.Analysis on Inverse Kinemics and Mechanical Properties of a Three DOF Flexible Parallel Mechanism[J].Journal of Changzhou University(Natural Science Edition),2016,(04):54.[doi:10.3969/j.issn.2095-0411.2016.05.009]
[6]张震,沈惠平,尹洪贺,等.一种新型3T1R并联机构的设计及其运动学分析[J].常州大学学报(自然科学版),2017,(05):57.[doi:10.3969/j.issn.2095-0411.2017.05.009]
ZHANG Zhen,SHEN Huiping,YIN Honghe,et al.Design and Kinematics Analysis of a Novel 3T1R Parallel Mechanism[J].Journal of Changzhou University(Natural Science Edition),2017,(04):57.[doi:10.3969/j.issn.2095-0411.2017.05.009]
[7]邓嘉鸣,邵国为,李家宇,等.一种新型低耦合并联操作手及其运动学[J].常州大学学报(自然科学版),2018,30(03):50.[doi:10.3969/j.issn.2095-0411.2018.03.006]
DENG Jiaming,SHAO Guowei,LI Jiayu,et al.A Novel Type Parallel Manipulator with Lower Coupling-Degree and Its Kinematics[J].Journal of Changzhou University(Natural Science Edition),2018,30(04):50.[doi:10.3969/j.issn.2095-0411.2018.03.006]
[8]朱 伟,刘晓飞,李寒冰,等.一种新型2T2R并联机构及其运动性能分析[J].常州大学学报(自然科学版),2019,31(02):44.[doi:10.3969/j.issn.2095-0411.2019.02.006]
ZHU Wei,LIU Xiaofei,LI Hanbing,et al.A Novel 2T2R Parallel Mechanism and Its Kinematic Analysis[J].Journal of Changzhou University(Natural Science Edition),2019,31(04):44.[doi:10.3969/j.issn.2095-0411.2019.02.006]
[9]尤晶晶,王 恪,沈惠平.具有解析式位置正解的三自由度并联机构逆动力学求解[J].常州大学学报(自然科学版),2021,33(04):83.[doi:10.3969/j.issn.2095-0411.2021.04.011]
YOU Jingjing,WANG Ke,SHEN Huiping.Inverse Dynamics of a 3-DOF Parallel Mechanism with Analytical Forward Kinematics[J].Journal of Changzhou University(Natural Science Edition),2021,33(04):83.[doi:10.3969/j.issn.2095-0411.2021.04.011]
[10]汤耀,沈惠平,曾博雄,等.一种零耦合度及部分运动解耦的空间2T1R并联机构动力学建模[J].常州大学学报(自然科学版),2022,34(01):48.[doi:10.3969/j.issn.2095-0411.2022.01.006]
TANG Yao,SHEN Huiping,ZENG Boxiong,et al.Dynamics Modeling of a Spatial 2T1R Parallel Mechanism with Zero Coupling Degree and Partial Motion Decoupling[J].Journal of Changzhou University(Natural Science Edition),2022,34(04):48.[doi:10.3969/j.issn.2095-0411.2022.01.006]