[1]王洪元,刘志远,卜 莹.基于蚁群优化算法的无线传感器网络跨层路由协议[J].常州大学学报(自然科学版),2014,(02):32-37.[doi:10.3969/j.issn.2095-0411.2014.02.009]
 WANG Hong-yuan,LIU Zhi-yuan,BU Ying.Ant Colony Optimization Algorithm For WSN CrossLayer Routing Protocol[J].Journal of Changzhou University(Natural Science Edition),2014,(02):32-37.[doi:10.3969/j.issn.2095-0411.2014.02.009]
点击复制

基于蚁群优化算法的无线传感器网络跨层路由协议()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2014年02期
页码:
32-37
栏目:
出版日期:
2014-04-30

文章信息/Info

Title:
Ant Colony Optimization Algorithm For WSN CrossLayer Routing Protocol
作者:
王洪元刘志远卜 莹
常州大学 信息科学与工程学院,江苏 常州 213164
Author(s):
WANG Hong-yuanLIU Zhi-yuanBU Ying
School of Information Science and Engineering,Changzhou University,Changzhou 213164,China
关键词:
蚁群算法无线传感器网络跨层优化能耗平衡网络冲突
Keywords:
ant colony algorithm wireless sensor network cross layer optimization network conflict
分类号:
TP312
DOI:
10.3969/j.issn.2095-0411.2014.02.009
文献标志码:
A
摘要:
针对无线传感器网络对实时性、鲁棒性及能耗平衡要求较高的特点,提出了基于蚁群算法和跨层优化的无线传感器网络路由协议ABCRO(Ant-Based&Cross-layerRoutingOptimization)。算法综合考虑各层之间的信息共享机制,将链路的通信开销和链路通信情况以数据的形式转换为网络性能优良的评估参数;通过将接纳控制网络节点机制、信息素禁忌表的双向更新、节点剩余能量信息维护及跳数更新等信息加入路由选择公式,有效增强算法的可扩展性,降低通信过程中的拥塞问题。仿真实验表明ABCRO算法能够较快的寻找出一条最优的路径,从而平衡网络能耗,降低冲突率,有效提高网络整体性能,延长网络寿命。
Abstract:
In view of the characteristics of high demand for wirelesssensor networks in realtime,robustness and energy balance,this paper puts forward a wireless sensor network routing protocol based on ant colony algorithm andoptimization of and cross layer named ABCRO(AntBased & Crosslayer RoutingOptimization).Considering information sharing mechanism between the layers,thealgorithm converts the communication overhead and link communication for excellent network performance evaluation parameters in the form of data,through addingthe information to the routing algorithm such as admission control mechanism ofnetwork nodes.Twoway update of pheromone taboo table,information maintenance for noderesidual energy and hop count update, thus enhancing the scalability of the algorithm effectively and reducing congestion problems in the communication process.Simulation results show that ABCRO algorithm can quickly find out an optimal path,so as to balance the network energy consumption and decrease the rate of online conflict,effectively improve the overall network performance and prolong the network life.

参考文献/References:

[1]Akyildiz I,Su W,Sankarsubramaniam Y,et al.A Survey on Sensor Networks[C].New York:Elsevier,2002:102-114.
[2]李智明,陈佳品,李振波.基于能耗优化的 AODV 路由协议[J].传感器与微系统,2012,31(7):42-43.
[3]闰苏莉,武晓朦,魏娜,等.基于改进遗传算法的油田配电网无功能化[J].电子设计工程,2009,17(1):20-22.
[4]Aghaei R,Rahman M A,Gueaieb W,et al.Ant Colony-Based Reinforcement Learning Algorithm for Routing in Wireless Sensor Networks[C].Warsaw:Institute of Electrical and Electronics Engineers Inc,2007:73-79.
[5]金彦亮,张勇,薛用.基于拥塞控制的无线传感网蚁群最优化路由协议[J].上海大学学报:自然科学版,2012,18(6):552-554.
[6]Mesut Gunes,Udo Sorges,Imed Bouazizi.ARA-the ant-colony based routing algorithm for MANETs[J].Parallel Processing Workshops,2002,13(3):79-85.
[7]陈凤超,李融林.基于路由代价的无线传感器网络蚁群路由算法[J].华南理工大学学报:自然科学版,2011,39(5):36-43.
[8]Lee J W,Ju-Jang L.Ant-colony-based scheduling algorithm for energy-efficient coverage of WSN[J].IEEE Sensors Journal,2012,12(10):3036-3046.
[9]Dorigo M,Maniezzo V,Colorni A.Ant system:Optimization by a colony of cooperating agent[J].IEEE Trans on Systems,Man and Cybernetics,1996,26(l):29-41.
[10]Beboit L,Bart B,Ingrid M.A survey on wireless body area networks[J].Wireless Networks,2011,17(1):1-18.
[11]陈宇.基于改进蚁群算法的无线传感器网络路由的研究[D].广州:华南理工大学,2012.

相似文献/References:

[1]薛国新,王 岳.一种改进的蚁群算法求解车辆的最短路径问题[J].常州大学学报(自然科学版),2012,(01):78.
 XUE Guo-xin,WANG Yue.Improved Ant Colony Algorithm for the Shortest Vehicles Path[J].Journal of Changzhou University(Natural Science Edition),2012,(02):78.
[2]段锁林,顾川林.基于BP神经网络视频火灾火焰检测方法[J].常州大学学报(自然科学版),2017,(02):65.[doi:10.3969/j.issn.2095-0411.2017.02.012]
 DUAN Suolin,GU Chuanlin.Rsearch on the Detection Method Based on the Optimized BP Neural Network for the Visual Fire Flame Recognition[J].Journal of Changzhou University(Natural Science Edition),2017,(02):65.[doi:10.3969/j.issn.2095-0411.2017.02.012]

备注/Memo

备注/Memo:
作者简介:王洪元(1960-),男,江苏常熟人,博士,教授,主要从事人工智能系统研究。
更新日期/Last Update: 2014-04-20