参考文献/References:
[1]YAN Q Y, ZHANG Y F. New periodic solutions to a generalized Hirota-Satsuma coupled KdV system [J]. Chinese Physics: B, 2003,12:131-135.
[2]SHEN J W, XU W, XU Y. Travelling wave solutions in the generalized Hirota-Satsuma coupled KdV system[J]. Applied Mathematics and Computation, 2004, 161:365-383.
[3]HUANG Y H, WU H X, XIE X,et al. On Coupled KdV equations with self-consistent sources[J]. Commucations in theoretical physics, 2008, 49:1091-1100.
[4]YAN Z Y. The(2+1)-dimensional integrable coupling of KdV equation: auto-b?cklund transformation and new non-traveling wave profiles[J]. Physics Letters A, 2005, 345: 362-377.
[5]DAI H H. A Jeffrey, The inverse scattering transforms for certain types of variable coefficient KdV equations[J]. Physics Letters A, 1989, 139: 369-372.
[6]FAN E G. Auto-B?cklund transformation and similarity reductions for general variable coefficient KdV equations[J]. Physics Letters A, 2002, 294:26-30.
[7]楼森岳,唐晓艳.非线性数学物理方法[M]. 北京:科学出版社,2006.
[8]陈登远.孤子引论[M]. 北京:科学出版社,2006.
[9]NIMMO J J C. The Crum transformation for a third-order scattering problem [J]. Proceedings of the Royal Society London A, 1990, 431:361-369.
[10]GIESEKER D. The Toda Hierarchy and the KdV hierarchy[J]. Communcation in Mathematical Physics, 1996, 181:587-603.
[11]ZENG Y B, LIN R L, CAO X. The relation between the toda hierarchy and the KdV hierarchy[J]. Physics Letters A, 1999, 251:177-183.
[12]LIU Y Q, CHEN D Y, HU C. The generalized wronskian solutions of inverse KdV hierarchy[J]. Applied Mathematics and Computation, 2011, 218:2015-2035.
[13]LIU Y Q, CHEN D Y, HU C. The generalized Wronskian solution to a negative KdV-mKdV equation[J]. Chinese physics letters, 2012, 29:080202.
[14]CHEN D Y, ZENG Y B. New nonlinear evolution equations associated with energy-Ddependent potentials eigenvalue problems[J]. 中国科技大学报,1983,13:293-300.
[15]范恩贵.可积系统与计算机代数[M]. 北京:科学出版社,2004.