[1]徐权,林毅,包伯成,等.四阶忆阻考毕兹混沌振荡器研究[J].常州大学学报(自然科学版),2016,(04):82-86.[doi:10.3969/j.issn.2095-0411.2016.04.015]
 XU Quan,LIN Yi,BAO Bocheng,et al.Research on Fourth-Order Memristive Colpitts Chaotic Oscillator[J].Journal of Changzhou University(Natural Science Edition),2016,(04):82-86.[doi:10.3969/j.issn.2095-0411.2016.04.015]
点击复制

四阶忆阻考毕兹混沌振荡器研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2016年04期
页码:
82-86
栏目:
计算机与信息工程
出版日期:
2016-07-30

文章信息/Info

Title:
Research on Fourth-Order Memristive Colpitts Chaotic Oscillator
作者:
徐权林毅包伯成王宁
常州大学 信息科学与工程学院,江苏 常州 213164
Author(s):
XU Quan LIN Yi BAO Bocheng WANG Ning
School of Information Science and Engneering, Changzhou University, Changzhou 213164, China
关键词:
一阶广义忆阻器 忆阻考毕兹混沌振荡器 动力学行为 非线性现象
Keywords:
first-order generalized memristor memristive Colpitts chaotic oscillator dynamical behaviour nonlinear phenomenon
分类号:
O 41
DOI:
10.3969/j.issn.2095-0411.2016.04.015
文献标志码:
A
摘要:
通过在三阶考毕兹混沌振荡器中引入一阶广义忆阻器,提出了一种新颖的四阶忆阻考毕兹混沌振荡器,其中一阶广义忆阻器由二极管桥级联一阶RC滤波器构成。建立了忆阻考毕兹混沌振荡器的动力学模型,研究了它的平衡点和稳定性,结果表明:四阶忆阻考毕兹混沌振荡器具有唯一的不稳定鞍焦。进一步开展了依赖于电路元件参数的动力学特性研究。采用理论分析、数值仿真和实验验证相结合的方法,对电路展现出的混沌吸引子、周期极限环等复杂的非线性现象进行了研究,实验结果与数值仿真结果相一致,较好地验证了理论分析结果。
Abstract:
By introducing first-order generalized memristor into a third-order Colpitts chaotic oscillator, a new fourth-order memristive Colpitts chaotic oscillator is proposed. The first-order generalized memristor is realized by a full-wave rectifier cascaded with a first-order parallel RC filter. The dynamical model of the memristive Colpitts chaotic oscillator is established, upon which the equilibrium point and its stability are studied. The results indicate that the fourth-order colpitts chaotic oscillator has only one unstable saddle-foci. Furthermore, the dynamics depending on circuit element parameter is investigated. The nonlinear phenomena of chaotic oscillations and periodic limit cycle are illustrated by combining the theoretical analysis, numerical simulation and experimental measurement. The experimental measurement and numerical simulation are consistent well, which well verifies the theoretical analysis.

参考文献/References:

[1]CHUA L O. The fourth element [J]. Proceedings of the IEEE, 2012, 100(6):1920-1927.
[2]BAO B C, XU J P, LIU Z. Initial state dependent dynamical behaviors in memristor based chaotic circuit [J]. Chinese Physics Letters, 2010, 27(7): 070504.
[3]LI Y X, HUANG X, GUO M. The generation, analysis, and circuit implementation of a new memristor based chaotic system [J]. Mathematical Problems in Engineering, 2013, 20(13): 398306.
[4]WANG G Y, HE J L, YUAN F, et al. Dynamical behaviors of a TiO2 memristor oscillator [J]. Chinese Physical Letters, 2013, 30(11): 110506.
[5]BAO B C, HU F W, LIU Z, et al. Mapping equivalent approach to analysis and realization of memristor-based dynamical circuit [J]. Chinese Physics B, 2014, 23(7): 070503.
[6]BUSCARINO A, FORTUNA L, FRASCA M, et al. A chaotic circuit based on Hewlett-Packard memristor [J]. Chaos, 2012, 22: 023136.
[7]CHEN M, YU J J, YU Q, et al. A memristive diode bridge-based canonical Chua’s circuit [J]. Entropy, 2014, 16(12): 6464-6476.
[8]LI Z J, ZENG Y C. A memristor oscillator based on a twin-T network [J]. Chinese Physics B, 2013, 22(4): 040502.
[9]BAO B C, MA Z H, XU J P, et al. A simple memristor chaotic circuit with complex dynamics [J]. International Journal of Bifurcation and Chaos,2011,21(9): 2629-2645.
[10]MAGGIO G M, FEO O D, KENNDY M P. Nonlinear analysis of the colpitts oscillator and applications to design [J]. IEEE Transactions on Circuits and Systems-I, Fundamental Theory and Applications, 1999, 46(9): 1118-1130.
[11]禹思敏. 四阶Colpitts混沌振荡器[J]. 物理学报, 2008, 57(6): 3374-3379.
[12]ZhAO Y, WANG Z G, LI W, et al. Design and measurement of a 53 GHz balanced colpitts oscillator [J]. Journal of Semiconductors, 2009, 30(1): 015003.
[13]BAO B C, YU J J, HU F W, et al. Generalized memristor consisting of diode bridge with first order parallel RC filter [J]. International Journal of Bifurcation and Chaos, 2014, 24(11): 1450143.
[14]CHEN M, LI M Y, YU Q, et al. Dynamics of self-excited attractors and hidden attractors in generalized memristor-based chua’s circuit [J]. Nonlinear Dynamics, 2015, 81:215-226.

备注/Memo

备注/Memo:
收稿日期:2015-11-13。基金项目:国家自然科学基金资助项目(51277017); 江苏省教育厅自然科学基金面上项目(14JKB430004); 常州市基础研究计划(自然科学基金)(CJ20159026)。作者简介:徐权(1983—),男,江苏赣榆人,博士,讲师,主要从事非线性电路与系统研究。通讯联系人:包伯成(1965—),E-mail: mervinbao@126.com
更新日期/Last Update: 2016-08-30