[1]唐 波,周鹏飞,吴东伟.石墨烯修饰的TiO2光催化剂性能研究[J].常州大学学报(自然科学版),2017,(06):48-54.[doi:10.3969/j.issn.2095-0411.2017.06.007]
 TANG Bo,ZHOU Pengfei,WU Dongwei.Photocatalytic Performance of Graphene Modified TiO2[J].Journal of Changzhou University(Natural Science Edition),2017,(06):48-54.[doi:10.3969/j.issn.2095-0411.2017.06.007]
点击复制

石墨烯修饰的TiO2光催化剂性能研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2017年06期
页码:
48-54
栏目:
材料科学与工程
出版日期:
2017-12-10

文章信息/Info

Title:
Photocatalytic Performance of Graphene Modified TiO2
作者:
唐 波周鹏飞吴东伟
常州大学 石油工程学院,江苏 常州 213016
Author(s):
TANG Bo ZHOU Pengfei WU Dongwei
School of Petroleum Engineering, Changzhou University, Changzhou 213016, China
关键词:
光催化剂 TiO2 石墨烯 表面官能团
Keywords:
photocatalyst TiO2 graphene surface functional groups
分类号:
TB 332
DOI:
10.3969/j.issn.2095-0411.2017.06.007
文献标志码:
A
摘要:
石墨烯修饰的二氧化钛复合光催化剂已经引起科学界的广泛关注,如何提高其光催化性能更是成为一个研究热点。为了充分发挥石墨烯的作用,提高光催化剂性能,本研究同时采用氧化还原法制备的石墨烯纳米片和化学气相沉积法制备的三维网状石墨烯对二氧化钛进行改性。通过优化石墨烯纳米片表面官能团含量以及2种石墨烯的含量,提升复合光催化剂的活性。在紫外光照射条件下,其分解甲基橙的速率常数达到1.3×10-2 min-1。采用红外光谱,X射线光电子能谱和电子顺磁共振谱等手段对样品进行表征,证明石墨烯和二氧化钛之间存在协同作用。另外,该复合光催化剂具有良好的稳定性和长使用寿命。
Abstract:
Graphene modified TiO2 composite photocatalysts have drawn increasing attention, and how to improve the resulting photocatalytic performance becomes a hot issue. In order to achieve the full potential of the modifier, the reduced graphene oxide(RGO)and three-dimensional graphene network(3DGN, prepared by chemical vapor deposition method)are adopted to modify TiO2. After optimizing the residual amount of surface functional group of the RGO and mass fractions of the RGO and 3DGN, the decomposition rate constant of methyl orange reaches 1.3×10-2 min-1 under UV-light irradiation. A synergy between the graphene and TiO2 is proved by using IR, XPS and EPR spectra. Moreover, the composite photocatalyst displays a well stability and long lifetime.

参考文献/References:

[1]瞿娟, 黄荣荣, 赖梨芳, 等. TiO2 光催化降解甲基橙性能的研究[J]. 常州大学学报(自然科学版), 2009(1):18-22.
[2]KHAN S, SHAHRY M A, INGLER W B. Efficient photochemical water splitting by a chemically modified n-TiO2 [J]. Science, 2002, 297:2243-2245.
[3]SAKTHIVEL S, KISCH H. Daylight photocatalysis by carbon modified titanium dioxide [J]. Angewandte Chemie International Edition, 2003, 42:4908-4911.
[4]ZHANG Y H, TANG Z R, FU X Z, et al. TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-Graphene truly different from other TiO2-carbon composite materials? [J]. ACS Nano, 2010(4):7303-7314.
[5]ZHANG X Y, LI H P, CUI X L, et al. Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting [J]. Journal of Materials Chemistry, 2010, 20:2801-2806.
[6]ZHANG H, YU X J, LI Y M, et al. P25-graphene composite as a high performance photocatalyst [J]. ACS Nano, 2010(4):380-386.
[7]CHEN C, CAI W M, LONG M C, et al. Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction [J]. ACS Nano, 2010(4):6425-6432.
[8]ZHAI Q Q, TANG B, HU G X. High photoactive and visible-light responsive graphene/titanate nanotubes photocatalysts: Preparation and characterization [J]. Journal of Hazardous Materials, 2011, 198:78-86.
[9]HU G X, TANG B. Photocatalytic mechanism of graphene/titanate nanotubes photocatalyst under visible-light irradiation [J]. Material of Chemical Physics, 2013, 138:608-614.
[10]IWABUCHI A, CHOO C, TANAKA K. Titania nanoparticles prepared with pulsed laser ablation of rutile single crystals in water [J]. Journal of Physical Chemistry B, 2004, 108:10863-10871.
[11]SUN Y F, WANG X B, TANG B, et al. Three-dimensional graphene networks modified photocatalyst with high performance under visible light irradiation [J]. Materials Letters, 2017, 189:54-57.
[12]TANG B, HU G X. Preparation of few layers three-dimensional graphene networks by CVD for energy storage application [J]. Chemical Vapor Deposition, 2014, 20:14-22.
[13]TANG B, HU G X, GAO H Y. Raman spectroscopic characterization of graphene [J]. Applied Spectroscopy Reviews, 2010, 45:369-407.
[14]TANG B, GAO H Y, HU G X. Growth mechanism and influences from kinetic factors on carbon materials with Cu and silica substrates during atmospheric pressure chemical vapour deposition [J]. Journal of Physical Chemistry C, 2013, 117:25175-25184.
[15]ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science, 2001, 293:269-271.
[16]NEUMANN B, BOGDANOFF P, TRIBUTSCH B, et al. Electrochemical mass spectroscopic and surface photovoltage studies of catalytic water photooxidation by undoped and carbon-doped titania [J]. Journal of Physical Chemistry B, 2005, 109:16579-16586.
[17]XIAO Q, ZHANG J, XIAO C, et al. Solar photocatalytic degradation of methylene blue in carbon-doped TiO2 nanoparticles suspension [J]. Solar Energy, 2008, 82:706-713.
[18]POUILLEAU J, DEVILLIERS D, GROULT H P. Surface of a titanium-based ceramic electrode material by X-ray photoelectron spectroscopy [J]. Journal of Materials Science, 1997, 32:5645-5651.
[19]SAHOO P K, PANIGRAHY B, BAHADUR D. Facile synthesis of reduced graphene oxide/Pt-Ni nanocatalysts: their magnetic and catalytic properties [J]. RCS Advances, 2014(4):48563-48571.
[20]CHEN C, CAI W M, LONG M C, et al. Template free sol-gel preparation and characterization of free-standing visible light responsive C, N-modified porous monolithic TiO2 [J]. Journal of Hazardous Materials, 2010, 178:560-565.

相似文献/References:

[1]朱媛媛,曲 婕,袁宁一,等.水热法制备雪花片状TiO2的光电性能[J].常州大学学报(自然科学版),2016,(03):23.[doi:10.3969/j.issn.2095-0411.2016.03.005]
 ZHU Yuanyuan,QU Jie,YUAN Ningyi,et al.Photoelectrochemical Properties of Snowflake-TiO2 Prepared by Hydrothermal Method[J].Journal of Changzhou University(Natural Science Edition),2016,(06):23.[doi:10.3969/j.issn.2095-0411.2016.03.005]
[2]孙雪妮,迟名扬,TATARCHUK Bruce,等.锐钛型TiO2在紫外光吸附脱硫中的机理研究[J].常州大学学报(自然科学版),2020,32(06):15.[doi:10.3969/j.issn.2095-0411.2020.06.003]
 SUN Xueni,CHI Mingyang,TATARCHUK Bruce,et al.Mechanism of Anatase TiO2 During UV Adsorptive Desulfurization[J].Journal of Changzhou University(Natural Science Edition),2020,32(06):15.[doi:10.3969/j.issn.2095-0411.2020.06.003]

备注/Memo

备注/Memo:
收稿日期:2017-06-21。
基金项目:国家自然科学基金资助项目(51506012); 江苏省自然科学基金资助项目(BK20150266)。
作者简介:唐波(1983—),男,江西南昌人,博士,讲师,主要从事石墨烯基复合能源材料研究。E-mail: tangbo@cczu.edu.cn
更新日期/Last Update: 1900-01-01