[1]冯俊生,孙卓,陈曼佳,等.深红红螺菌在MFC中电子传递机制与产电量研究[J].常州大学学报(自然科学版),2018,30(02):45-52.[doi:10.3969/j.issn.2095-0411.2018.02.007]
 FENG Junsheng,SUN Zhuo,CHEN Manjia,et al.Research on Production Capacity and Electron Transfer Mechanisms of Rhodospirillum Rubrum[J].Journal of Changzhou University(Natural Science Edition),2018,30(02):45-52.[doi:10.3969/j.issn.2095-0411.2018.02.007]
点击复制

深红红螺菌在MFC中电子传递机制与产电量研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第30卷
期数:
2018年02期
页码:
45-52
栏目:
环境科学与工程
出版日期:
2018-03-31

文章信息/Info

Title:
Research on Production Capacity and Electron Transfer Mechanisms of Rhodospirillum Rubrum
作者:
冯俊生1孙卓1陈曼佳2刘亮13李娜1
1. 常州大学 环境与安全工程学院,江苏 常州 213164; 2. 广东省生态环境技术研究所,广东 广州 510650; 3. 常州大学 怀德学院,江苏 靖江 214500
Author(s):
FENG Junsheng1 SUN Zhuo1 CHEN Manjia2 LIU Liang13 LI Na1
1.School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China; 2.Guangdong Institute of Eco-Environment and Soil Sciences, Guangzhou 510650, China; 3.Huaide College, Changzhou University, Jingjiang 214500, China
关键词:
微生物燃料电池 深红红螺菌397 聚醚废水 电子传递机制 产电量
Keywords:
MFC Rhodospirillum rubrum 397 polyether wastewater electron transfer mechanism production capacity
分类号:
X 703.1
DOI:
10.3969/j.issn.2095-0411.2018.02.007
文献标志码:
A
摘要:
微生物燃料电池(Microbial Fuel Cell,MFC)中阳极电子传递过程是决定MFC产电量和产电速率的关键因素,优化微生物燃料电池阳极传递方式是提高MFC产电量的重要手段。以聚醚废水为实验基液,深红红螺菌397为MFC的催化剂,构建了阳极包裹型和阳极未包型两种MFC来研究其电子传递机制,结果显示,此微生物在阳极厌氧处理聚醚废水时通过直接接触机制和电子穿梭机制两种机制进来传递电子,直接接触机制的产电量是电子穿梭机制的1.79倍。此外还对如何提高MFC产电量进行了探讨,构建的AQDS型MFC优化了MFC的性能,MFC启动时间加快了4 h,最大输出电流提高了50%,产电量提高了39.5%。
Abstract:
The anodic electron transfer process in microbial fuel cell(MFC)is a key factor and the rate limiting step in determining the electricity producing quantity of MFC. Optimizing the transmission mechanism of anodic electron in microbial fuel cell is an important means to improve the electricity producing quantity of MFC. This study uses Rhodospirillum rubrum 397 to treat polyether wastewater, builds coated-MFC, Non-packet-MFC and AQDS-MFC to treat polyether wastewater, and conduct a study on its electronic transmission mechanism, In addition, this paper holds a discussion on how to improve the production of MFC. The results showed, Rhodospirillum rubrum 397 transfer electron in the anode chamber through direct contact mechanism and electronic shuttle mechanism. The direct contact mechanism contributes 1.79 times the contribution of the electronic shuttle mechanism. AQDS MFC optimizes MFC performance, the MFC start-up time accelerates 4h, the maximum output current increases by 50% and electricity production increases by 39.5%.

参考文献/References:

[1]张丽彬, 李超, 丁丽丽,等. 温度、pH对微生物燃料电池产电的影响研究[J]. 环境污染与防治, 2010, 32(4):62-66.
[2]杨晓双, 王凯, 冯春华,等. 石墨烯氧化物气凝胶修饰金属阳极促进微生物燃料电池的产电性能[J]. 环境工程学报, 2017, 11(4):2598-2606.
[3]邓丽芳, 李芳柏, 周顺桂,等. 克雷伯氏菌燃料电池的电子穿梭机制研究[J]. 科学通报, 2009(19):2983-2987.
[4]VON C H, OGAWA J, SHIMIZU S, et al. Secretion of flavins by Shewanella species and their role in extracellular electron transfer[J]. Applied & Environmental Microbiology,2008,74(3):615-623.
[5]BRUTINEL E D, GRALNICK J A.Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella[J]. Applied Microbiology and Biotechnology,2012,93(1):41-48.
[6]TURICK C E, TISA L S, JR C F. Melaninproduction and use as a soluble electron shuttle for Fe(III)oxide reduction and as a terminal electron acceptor by shewanella algae BrY[J]. Applied & Environmental Microbiology, 2002,68(5):24-36.
[7]SUMMERS Z M, FOGARTY H E, LEANG C,et al. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria[J]. Science,2010,330:1413-1415.
[8]KATO S, HASHIMOTO K, WATANABE K,et al. Microbial interspecies electron transfer via electric currents through conductive minerals[J]. Proceedings of the National Academy of Sciences, 2012, 109(25):10042-10046.
[9]KAPPLER A, WUESTNER M L, RUECKER A,et al.Biochar as an electron shuttle between bacteria and Fe(III)minerals[J].Proceedings of the National Academy of Sciences,2014,1(8):339-344.
[10]CHEN S, ROTARU A E, SHRESTHA P M,et al. Promoting interspecies electron transfer with biochar[J].Scientific Reports,2014,4:5019.
[11]LIU F, ROTARU A E, SHRESTHA P M,et al. Promoting direct interspecies electron transfer with activated carbon[J]. Energy and Environmental Science, 2012,5(10):8982-8989.
[12]KATO S, HASHIMOTO K, WATANABE K,et al.Methanogenesis facilitated by electric syntrophy via(semi)conductive iron-oxide minerals[J].Environmental Microbiology,2011,14(7):1646-1654.
[13]HOLMES D E, NEVIN K P, LOVLEY D R.In situ expression of nifd in geobacteraceae in subsurface sediments[J]. Applied & Environmental Microbiology,2004,70(12):7251-7259.
[14] KLAPPER L, MCKNIGHT D M, FULTON J R,et al.Fulvic acid oxidation state detection using fluorescence spectroscopy[J].Environmental Science & Technology,2002,36:3170.
[15]冯雅丽, 联静, 杜竹玮,等. 无介体微生物燃料电池研究进展[J]. 有色金属工程, 2005, 57(2):47-50.
[16]赵金明, 赵云, 黄庆,等. 单壁碳纳米管在LB培养基及生理盐水中的抗菌性研究[J]. 核技术, 2012, 35(6):477-480.
[17]崔立勋. 湿热灭菌方法分析[J]. 黑龙江医药, 2012, 25(1):107-108.
[18]薄晓, 李鹏, 赵晓峰,等. 废水微生物燃料池阳极碳毡的产电特性的研究[J]. 化工新型材料, 2014(12):126-129.
[19]郑宇, 李天宏, 周顺桂,等. pH值对猪粪废水微生物燃料电池产电性能的影响[J]. 应用基础与工程科学学报, 2010(s1):1-9.
[20]梁鹏, 范明志, 曹效鑫,等. 微生物燃料电池表观内阻的构成和测量[J]. 环境科学, 2007, 28(8):1894-1898.

备注/Memo

备注/Memo:
收稿日期:2017-09-26。
基金项目:江苏省科技项目(BY2015027-06); 广东省自然科学基金(2015A030313752)。
作者简介:冯俊生(1963—),男,内蒙古呼和浩特人,硕士,副教授。通信联系人:刘亮(1982—),E-mail:liuliang@cczu.edu.cn
更新日期/Last Update: 2018-03-20