参考文献/References:
[1]XIANG L. Recommendation system practice[M].Beijing: Posts & Telecom Press,2012:41-43.
[2]PARK Y,PARK S,JUNG W,et al.Reversed CF: a fast collaborative filtering algorithm using a k-nearest neighbor graph[J].Expert Systems with Applications,2015,42(8):4022-4028.
[3]荣辉桂,火生旭,胡春华,等.基于用户相似度的协同过滤推荐算法[J].通信学报,2014,35(2):16-24.
[4]王升升,赵海燕,陈庆奎,等. 基于社交标签和社交信任的概率矩阵分解推荐算法[J]. 小型微型计算机系统,2016(5):921-926.
[5]熊丽荣,刘坚,汤颖.基于联合概率矩阵分解的移动社会化推荐[J]. 计算机科学,2016(9):255-260.
[6]张明,郭娣. 一种优化标签的矩阵分解推荐算法[J]. 计算机工程与应用,2015(23):119-124.
[7]MANZATO M G. Supporting implicit feedback on recommender systems with metadata awareness[C]//SAC 2013: Proceedings of the 28th Annual ACM Symposium on Applied Computing.New York: ACM,2013:908-913.
[8]KRASNOSHCHOK O,LAMO Y.Extended content-boosted matrix factorization algorithm for recommender systems[J].Procedia Computer Science,2014,35: 417-426.
[9]AL-QAHERI H,BANERJEE S.Design and implementation of a policy recommender system towards social innovation:an experience with hybrid machine learning[M]. [S.l.]: Springer International Publishing,2015: 237-250.
[10]JAKOB N,WEBERS H,MLLERM C,et al.Beyond the stars: exploiting free-text user reviews to improve the accuracy of movie recommendations[C]//Proc of the 1st International CIKM Workshop on Topic-Sentiment Analysis for Mass Opinion.Hong Kong:[s.n.],2009: 57-64.
[11]王建,黄佳进. LDA-RR:一种基于评分和评论的推荐方法[J]. 计算机科学,2017(2):267-269,305.
[12]BILGE A,KALELI C. A multi-criteria item-based collaborative filtering framework[C]//International Joint Conference on Computer Science and Software Engineering(JCSSE). [S.l.]: IEEE,2014:18-22.
[13]刘慧婷,陈艳,肖慧慧. 基于用户偏好的矩阵分解推荐算法[J]. 计算机应用,2015(S2):118-121.
[14]BLEID M,NGA Y,JORDAN M I.Latent dirichlet allocation[J].Journal of Machine Learning Research,2003,3(4/5):993-1022.
[15]CELMA M,HERRERA P.A new approach to evaluating novel recommendations[C]//RecSys 2008: Proceedings of the 2008 ACM Conference on Recommender Systems.New York: ACM,2008:179-186.