[1]周 满,侯楚珺,陈敬文,等.碳层修饰3DOM-TiO2材料的可控合成及光催化性能研究[J].常州大学学报(自然科学版),2019,31(05):24-30.[doi:10.3969/j.issn.2095-0411.2019.05.004]
 ZHOU Man,HOU Chujun,CHEN Jingwen,et al.Controlled Synthesis of 3DOM-TiO2 Modified by Carbon Layers for Photocatalytic Application[J].Journal of Changzhou University(Natural Science Edition),2019,31(05):24-30.[doi:10.3969/j.issn.2095-0411.2019.05.004]
点击复制

碳层修饰3DOM-TiO2材料的可控合成及光催化性能研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第31卷
期数:
2019年05期
页码:
24-30
栏目:
化学化工
出版日期:
2019-09-28

文章信息/Info

Title:
Controlled Synthesis of 3DOM-TiO2 Modified by Carbon Layers for Photocatalytic Application
文章编号:
2095-0411(2019)05-0024-07
作者:
周 满12侯楚珺1陈敬文1张亚康1李忠玉23
(1. 常州大学 石油化工学院,江苏 常州 213164; 2. 先进催化与绿色制造协同创新中心,江苏 常州 213164; 3. 常州大学 环境与安全工程学院,江苏 常州 213164)
Author(s):
ZHOU Man12 HOU Chujun1 CHEN Jingwen1 ZHANG Yakang1 LI Zhongyu23
(1. School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; 2. Advance Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou 213164, China; 3. School of Environmental & Safety Engineering, Changzhou University, Changzhou 213164, China)
关键词:
3DOM-TiO2 碳修饰 光催化 可控合成
Keywords:
3DOM-TiO2 carbon modification photocatalysis controlled synthesis
分类号:
TQ 426.8
DOI:
10.3969/j.issn.2095-0411.2019.05.004
文献标志码:
A
摘要:
通过不同碳前驱体量的调控,首次实现对于三维有序大孔3DOM-TiO2材料表面碳含量的可控修饰。通过扫描电镜(SEM)、透射电镜(TEM)、热重分析(TG)、X射线衍射(XRD)、紫外可见漫反射(UV-Vis)、红外光谱(FT-IR)等手段对所合成的复合材料进行系统表征。研究结果表明,碳层修饰对吸附降解均有较大影响。质量分数过小(6.3%)或过大(62%)的碳负载量会限制材料光催化性能,质量分数12%负载量对应的吸附降解能力最强。
Abstract:
The novel composite of carbon modified 3DOM-TiO2 was successfully synthesized by adjusting the amount of carbon precursor. The as-prepared samples were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), thermogravimetric analysis(TGA), UV-Vis diffused reflectance spectra(UV-Vis)and Fourier transform infrared spectra(FT-IR). The results demonstrated that carbon played important roles in both adsorption and degradation process. It caused an obvious impact on photocatalysis activities when loading too much(62%)or less(6.3%)carbon materials. However, 3DOM-TiO2 with 12% carbon loading amount showed the highest degradation and adsorption rate.

参考文献/References:

[1]YU J G,QI L F,JARONIEC M. Hydrogen production by photocatalytic water splitting over Pt/TiO<sub>2</sub> nanosheets with exposed(001)facets[J]. Journal of Physical Chemistry C,2010,114(30): 13118-13125.
[2]ZHOU X M,HAUBLEIN V,LIU N, et al. TiO<sub>2</sub> nanotubes: nitrogen-ion implantation at low dose provides noble-metal-free photocatalytic H<sub>2</sub>-evolution activity[J]. Angewandte Chemie-International Edition,2016,55: 3763-3767.
[3]WANG X N,LONG R,LIU D,et al. Enhanced full-spectrum water splitting by confining plasmonic Au nanoparticles in N-doped TiO<sub>2</sub> bowl nanoarrays[J]. Nano Energy,2016,24: 87-93.
[4]DHANALAKSHMI K B, LATHA S, ANANDAN S, et al. Dye sensitized hydrogen evolution from water[J]. International Journal of Hydrogen Energy,2001,26: 669-674.
[5]HASHIMOTO K,IRIE H,FUJISHIMA A. TiO<sub>2</sub> photocatalysis: A historical overview and future prospects[J]. Japanese Journal of Applied Physics,2005,44: 8269-8285.
[6]HERNANDEZ-ALONSO M D,FRESNO F,SUAREZ S,et al. Development of alternative photocatalysts to TiO<sub>2</sub>: challenges and opportunities[J]. Energy &amp; Environmental Science,2009,2(12): 1231-1257.
[7]ZHOU X,LIU N,SCHMUKI P. Photocatalysis with TiO<sub>2</sub> nanotubes: “colorful” reactivity and designing site-specific photocatalytic centers into TiO<sub>2</sub> nanotubes[J]. ACS Catalysis,2017,7: 3210-3235.
[8]HWANG S H,YUN J,JANG J. Multi-shell porous TiO<sub>2</sub> hollow nanoparticles for enhanced light harvesting in dye-sensitized solar cells[J]. Advanced Functional Materials,2014,24(48): 7619-7626.
[9]LIU W F,WANG A J,TANG J J,et al. Preparation and photocatalytic activity of hierarchically 3D ordered macro/mesoporous titania inverse opal films[J]. Microporous and Mesoporous Materials,2015,204: 143-148.
[10]JIAO J Q,WEI Y C,ZHAO Y L,et al. AuPd/3DOM-TiO<sub>2</sub> catalysts for photocatalytic reduction of CO<sub>2</sub>: high efficient separation of photogenerated charge carriers[J]. Applied Catalysis B: Environmental,2017, 209: 228-239.
[11]STEIN A,WILSON B E,RUDISILL S G. Design and functionality of colloidal-crystal-templated materials-chemical applications of inverse opals[J]. Chemical Society Reviews,2013,42(7): 2763-2803.
[12]WANG X H,BAIYILA D,LI S T. Macroporous TiO<sub>2</sub> encapsulated Au@Pd bimetal nanoparticles for the photocatalytic oxidation of alcohols in water under visible-light[J]. RSC Advances,2016,6(109): 107233-107238.
[13]ZHANG W J,ZHANG X Z,ZHANG Z X,et al. A nitrogen-doped carbon dot-sensitized TiO<sub>2</sub> inverse opal film: preparation,enhanced photoelectrochemical and photocatalytic performance[J]. Journal of the Electrochemical Society,2015,162(9): 638-644.
[14]LIU G,LI G,WANG X L,et al. Flexible, three-dimensional ordered macroporous TiO<sub>2</sub> electrode with enhanced electrode-electrolyte interaction in high-power Li-ion batteries[J]. Nano Energy,2016,24: 72-77.
[15]ZHAO Z X,LIU G C,LI B,et al. Dye-sensitized solar cells based on hierarchically structured porous TiO<sub>2</sub> filled with nanoparticles[J]. Journal of Materials Chemistry A,2015,3(21): 11320-11329.
[16]SRINIVASAN M,WHITE T. Degradation of methylene blue by three-dimensionally ordered macroporous titania[J]. Environmental Science and Technology,2007,41: 4405-4409.
[17]ZHENG X Z,MENG S G,CHEN J,et al. Titanium dioxide photonic crystals with enhanced photocatalytic activity: Matching photonic band gaps of TiO<sub>2</sub> to the absorption peaks of dyes[J]. Journal of Physical Chemistry C,2013,117(21): 21263-21273.
[18]NI M,LEUNG M,LEUNG D,et al. A review and recent developments in photocatalytic water-splitting using TiO<sub>2</sub> for hydrogen production[J]. Renewable and Sustainable Energy Reviews,2007,11: 401-425.
[19]CAO S W,YU J G. Carbon-based H<sub>2</sub>-production photocatalytic materials[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews,2016,27: 72-99.
[20]AN G,MA W H,SUN Z Y,et al. Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation[J]. Carbon,2007,45(9): 1795-1801.
[21]ZHANG H,LYU X J,LI Y M,et al. P25-graphene composite as a high performance photocatalyst[J]. ACS Nano,2010,4(1): 380-386.
[22]XIANG Q J,YU J G,JARONIEC M. Graphene-based semiconductor photocatalysts[J]. Chemical Society Reviews,2012,41: 782-796.
[23]NAGARAJU G,EBELING G,GONALVES R V,et al. Controlled growth of TiO<sub>2</sub> and TiO<sub>2</sub>-RGO composite nanoparticles in ionic liquids for enhanced photocatalytic H<sub>2</sub> generation[J]. Journal of Molecular Catalysis A: Chemical,2013,378: 231-220.
[24]ZHANG X Y,LI H P,CUI X L,et al. Graphene/TiO<sub>2</sub> nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting[J]. Journal of Materials Chemistry,2010,20(41): 2801-2806.
[25]YU Z M,MENG J L,LI Y,et al. Efficient photocatalytic hydrogen production from water over a CuO and carbon fiber comodified TiO<sub>2</sub> nanocomposite photocatalyst[J]. International Journal of Hydrogen Energy,2013,38(36),16649-16655.
[26]LIAN Z C,XU P P,WANG W C,et al. C<sub>60</sub>-decorated CdS/TiO<sub>2</sub> mesoporous architectures with enhanced photostability and photocatalytic activity for H<sub>2</sub> evolution[J]. ACS Applied Materials and Interfaces[J]. 2015,7,4533-4540.
[27]LIU J,LIU Y,LIU N Y,et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway[J]. Science,2015,347: 970-974.
[28]CUI G W,WANG W L,MA M Y,et al. Rational design of carbon and TiO<sub>2</sub> assembly materials: covered or strewn, which is better for photocatalysis[J]. Chemical Communications[J]. 2013, 49(57): 6415-6417.
[29]ZHOU M,HOU C J,CHEN J W,et al. Controlling the size of connecting windows in three-dimensionally ordered macroporous TiO<sub>2</sub> for enhanced photocatalytic activity[J]. Journal of Materials Science-materials in Electronics[J]. 2018, 29: 11972-11981.
[30]SCHNEIDER J,MATSUOKA M,TAKEUCHI M,et al. Understanding TiO<sub>2</sub> photocatalysis: mechanisms and materials[J]. Chemical Reviews,2014,114(19): 9919-9986.

备注/Memo

备注/Memo:
收稿日期:2018-12-30。
基金项目:国家自然科学基金青年基金资助项目(21805015); 江苏省自然科学基金资助项目(BK20180962)。
作者简介:周满(1987—),男,江苏常州人,博士,讲师。E-mail:zhouman@cczu.edu.cn
更新日期/Last Update: 2019-09-30