[1]盛 扬,李 帅,段宗权,等.Ag-In-Zn-S四元量子点的制备及其表面修饰[J].常州大学学报(自然科学版),2019,31(06):39-45.
 SHENG Yang,LI Shuai,DUAN Zongquan,et al.Synthesis and Surface Modification of Ag-In-Zn-S Quaternary Quantum Dots[J].Journal of Changzhou University(Natural Science Edition),2019,31(06):39-45.
点击复制

Ag-In-Zn-S四元量子点的制备及其表面修饰()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第31卷
期数:
2019年06期
页码:
39-45
栏目:
材料科学与工程
出版日期:
2019-11-28

文章信息/Info

Title:
Synthesis and Surface Modification of Ag-In-Zn-S Quaternary Quantum Dots
文章编号:
2095-0411(2019)06-0039-07
作者:
盛 扬李 帅段宗权孙一新张 嵘
(常州大学 江苏省环境友好高分子材料重点实验室, 江苏 常州 213164; 常州大学 材料科学与工程学院, 江苏 常州 213164)
Author(s):
SHENG Yang LI Shuai DUAN Zongquan SUN Yixin ZHANG Rong
(Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials,Changzhou University,Changzhou 213164,China; School of Materials Science and Engineering, Changzhou University,Changzhou 213164,China)
关键词:
量子点 荧光 聚异丁烯马来酸酐 纳米复合粒子
Keywords:
quantum dots fluorescence poly(isobutylene-alt-maleic anhydride) nanocomposite
分类号:
O 613.52
文献标志码:
A
摘要:
采用油相热分解法制备了Ag-In-Zn-S四元量子点(AIZS)。通过改变锌的掺杂量实现了对AIZS量子点荧光波长的调控(从622 nm至545 nm)。然后使用油胺接枝的聚异丁烯马来酸酐(PBMA-g-OAM)对量子点进行了包埋,得到了具有亲水性的荧光纳米复合粒子。使用XRD,EDS和TEM对AIZS量子点的结构及形貌进行了研究分析。使用荧光分光光度计对量子点的荧光发光性能进行了表征。使用FT-IR对两亲性聚合物PBMA-g-OAM的组成进行了分析。使用DLS及SEM对AIZS/PBMA-g-OAM纳米复合粒子的尺寸,溶液稳定性及形貌进行分析。研究结果表明,所制备的AIZS/PBMA-g-OAM纳米复合粒子具有稳定良好的荧光性能,是一种潜在的生物医学荧光标记材料。
Abstract:
Ag-In-Zn-S(AIZS)quaternary quantum dots(QDs)were successfully synthesized via thermal decomposition method. By simply changing the amount of Zn precursor, the emission wavelength of the obtained QDs was tuned from 622 nm to 545 nm. After that, these hydrophobic QDs were subject to phase transfer via encapsulation by olaylamine grafted poly(isobutylene-alt-maleic anhydride)(PBMA-g-OAM). XRD, EDS and TEM were used to characterize the structure of AIZS QDs. Fluorescence spectrometer was used to measure the emission spectra of the QDs. FT-IR was used to confirm the formation of the PBMA-g-OAM amphiphilic copolymer. DLS was used to characterize the hydrodynamic size of AIZS/ PBMA-g-OAM nanospheres. SEM was used to demonstrate the morphology of the obtained AIZS/ PBMA-g-OAM nanocomposite.

参考文献/References:

[1]季洪雷, 周青超, 潘俊, 等. 量子点液晶显示背光技术[J]. 中国光学, 2017, 10(5): 666-680.
[2]国云, 周敏. 量子点生物传感器及其在生物医学分析检测中的应用[J]. 传感器与微系统, 2017, 36(11): 6-9, 13.
[3]OWEN J, BRUS L. Chemical synthesis and luminescence applications of colloidal semiconductor quantum dots[J]. Journal of the American Chemical Society, 2017, 139(32): 10939-10943.
[4]SHENG Y, LIAO L D, THAKOR N V, et al. Nanoparticles for molecular imaging[J]. Journal of Biomedical Nanotechnology, 2014, 10(10): 2641-2676.
[5]MUGNANO M, MEMMOLO P, MICCIO L, et al. In vitro cytotoxicity evaluation of cadmium by label-free holographic microscopy[J]. Journal of Biophotonics, 2018, 11(12): e201800099.
[6]SHARMA V K, MCDONALD T J, SOHN M, et al. Assessment of toxicity of selenium and cadmium selenium quantum dots: a review[J]. Chemosphere, 2017, 188: 403-413.
[7]XU G X, ZENG S W, ZHANG B T, et al. New generation cadmium-free quantum dots for biophotonics and nanomedicine[J]. Chemical Reviews, 2016, 116(19): 12234-12327.
[8]WANG H C, ZHANG H, CHEN H Y, et al. Cadmium-free InP/ZnSeS/ZnS heterostructure-based quantum dot light-emitting diodes with a ZnMgO electron transport layer and a brightness of over 10 000 cd·m-2[J]. Small, 2017, 13(13): 1603962.
[9]SANDRONI M, GUERET R, WEGNER K D, et al. Cadmium-free CuInS2/ZnS quantum dots as efficient and robust photosensitizers in combination with a molecular catalyst for visible light-driven H2 production in water[J]. Energy & Environmental Science, 2018, 11(7): 1752-1761.
[10]CAI C Q, ZHAI L L, MA Y H, et al. Synthesis of AgInS2 quantum dots with tunable photoluminescence for sensitized solar cells[J]. Journal of Power Sources, 2017, 341: 11-18.
[11]GABKA G, BUJAK P, KOTWICA K, et al. Luminophores of tunable colors from ternary Ag-In-S and quaternary Ag-In-Zn-S nanocrystals covering the visible to near-infrared spectral range[J]. Physical Chemistry Chemical Physics: PCCP, 2017, 19(2): 1217-1228.
[12]GUAN Z Y, TANG A W, LYU P, et al. New insights into the formation and color-tunable optical properties of multinary Cu-In-Zn-based chalcogenide semiconductor nanocrystals[J]. Advanced Optical Materials, 2018, 6(10): 1701389.
[13]WANG J, DENG T, DENG D W, et al. Quaternary alloy quantum dots with widely tunable emission-a versatile system to fabricate dual-emission nanocomposites for bio-imaging[J]. RSC Advances, 2016, 6(59): 53760-53767.
[14]周蓓莹, 陈东, 刘佳乐, 等. CuInS2/ZnS核壳结构量子点的水相制备与性能研究[J]. 无机材料学报, 2018, 33(3): 279-283.
[15]MAO B D, CHUANG C H, MCCLEESE C, et al. Near-infrared emitting AgInS2/ZnS nanocrystals[J]. Journal of Physical Chemistry C, 2014, 118(25): 13883-13889.
[16]TANG X S, CHEN W W, ZU Z Q, et al. Nanocomposites of AgInZnS and graphene nanosheets as efficient photocatalysts for hydrogen evolution[J]. Nanoscale, 2015, 7(44): 18498-18503.
[17]KOBOSKO S M, KAMAT P V. Indium-rich AgInS2-ZnS quantum dots: Ag-/ Zn-dependent photophysics and photovoltaics[J]. Journal of Physical Chemistry C, 2018, 122(26): 14336-14344.
[18]FAHMI M Z, CHANG J Y. Potential application of oleylamine-encapsulated AgInS2-ZnS quantum dots for cancer cell labeling[J]. Procedia Chemistry, 2016, 18: 112-121.
[19]ZHU B Y, JI W, DUAN Z Q, et al. Low turn-on voltage and highly bright Ag-In-Zn-S quantum dot light-emitting diodes[J]. Journal of Materials Chemistry C, 2018, 6(17): 4683-4690.
[20]YE Y, ZANG Z G, ZHOU T W, et al. Theoretical and experimental investigation of highly photocatalytic performance of CuInZnS nanoporous structure for removing the NO gas[J]. Journal of Catalysis, 2018, 357: 100-107.
[21]GIRMA W M, FAHMI M Z, PERMADI A, et al. Synthetic strategies and biomedical applications of I-III-VI ternary quantum dots[J]. Journal of Materials Chemistry B, 2017, 5(31): 6193-6216.
[22]LI S Q, TANG X S, ZANG Z G, et al. I-III-VI chalcogenide semiconductor nanocrystals: synthesis, properties, and applications[J]. Chinese Journal of Catalysis, 2018, 39(4): 590-605.
[23]TANG X S, HO W B A, XUE J M. Synthesis of Zn-doped AgInS2 nanocrystals and their fluorescence properties[J]. Journal of Physical Chemistry C, 2012, 116(17): 9769-9773.
[24]SHENG Y, TANG X S, XUE J M. Synthesis of AIZS@SiO2core-shell nanoparticles for cellular imaging applications[J]. J Mater Chem, 2011, 22(4): 1290-1296.
[25]SHENG Y, TANG X S, PENG E, et al. Graphene oxide based fluorescent nanocomposites for cellular imaging[J]. J Mater Chem B, 2013, 1(4): 512-521.
[26]OH J K. Surface modification of colloidal CdX-based quantum dots for biomedical applications[J]. Journal of Materials Chemistry, 2010, 20(39): 8433.
[27]CHEN H T, WANG T, LI K M, et al. Effects of surface modification of quantum dots on viability and migration of triple-negative breast cancer cells[J]. Journal of Colloid and Interface Science, 2017, 485: 51-58.

相似文献/References:

[1]王建浩,张晨澄,李静燕,等.毛细管电泳在量子点生物分析中的应用[J].常州大学学报(自然科学版),2015,(03):84.[doi:10.3969/j.issn.2095-0411.2015.03.017]
 WANG Jianhao,ZHANG Chencheng,LI Jingyan,et al.The Application of Capillary Electrophoresis in Quantum Dots Bioanalysis[J].Journal of Changzhou University(Natural Science Edition),2015,(06):84.[doi:10.3969/j.issn.2095-0411.2015.03.017]
[2]赖梨芳,陈林提,程美令,等.基于3,4-吡唑二甲酸的锌配合物的合成、晶体结构和荧光性质[J].常州大学学报(自然科学版),2017,(05):16.[doi:10.3969/j.issn.2095-0411.2017.05.003]
 LAI Lifang,CHEN Linti,CHENG Meiling,et al.Synthesis, Crystal Structure and Luminescent Property of Zinc Complex Based on 3,4-Pyrazoledicarboxylic Acid Ligand[J].Journal of Changzhou University(Natural Science Edition),2017,(06):16.[doi:10.3969/j.issn.2095-0411.2017.05.003]
[3]陶永新,杨学波.噻二唑类化合物的制备及其荧光性能[J].常州大学学报(自然科学版),2017,(06):1.[doi:10.3969/j.issn.2095-0411.2017.06.001]
 TAO Yongxin,YANG Xuebo.Synthesis and Fluorescent Properties of Thiadiazole-Based Compounds[J].Journal of Changzhou University(Natural Science Edition),2017,(06):1.[doi:10.3969/j.issn.2095-0411.2017.06.001]
[4]马 骁,李继鹏,薛 阳,等.高量子产率吡啶嗡盐可逆机械变色荧光性质[J].常州大学学报(自然科学版),2020,32(04):19.[doi:10.3969/j.issn.2095-0411.2020.04.003]
 MA Xiao,LI Jipeng,XUE Yang,et al.Study of Reversible Mechanochromic Fluorescence Property of Pyridinium Salt with High Quantum Yield[J].Journal of Changzhou University(Natural Science Edition),2020,32(06):19.[doi:10.3969/j.issn.2095-0411.2020.04.003]
[5]张艳秋,孙旻睿,杜尔登,等.Eu3+修饰配位聚合物的构筑及对水中Pb2+的荧光检测[J].常州大学学报(自然科学版),2022,34(05):39.[doi:10.3969/j.issn.2095-0411.2022.05.006]
 ZHANG Yanqiu,SUN Minrui,DU Erdeng,et al.Fluorescent Detection of Pb2+ in Water Environment by a Eu3+ Functionalized Coordination Polymer[J].Journal of Changzhou University(Natural Science Edition),2022,34(06):39.[doi:10.3969/j.issn.2095-0411.2022.05.006]

备注/Memo

备注/Memo:
收稿日期:2019-03-13。
基金项目:江苏省自然科学基金青年基金资助项目(BK20160278)。
作者简介:盛扬(1985—),男,江苏常州人,博士,讲师。通信联系人:张嵘(1969—),E-mail: rzhang@cczu.edu.cn
更新日期/Last Update: 2019-12-02