[1]王 琼,李 鑫,窦海波,等.同心协力策略优化研究[J].常州大学学报(自然科学版),2020,32(04):77-82.[doi:10.3969/j.issn.2095-0411.2020.04.0011]
 WANG Qiong,LI Xin,DOU Haibo,et al.Research on the Optimization of Concentric Cooperation Strategy[J].Journal of Changzhou University(Natural Science Edition),2020,32(04):77-82.[doi:10.3969/j.issn.2095-0411.2020.04.0011]
点击复制

同心协力策略优化研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第32卷
期数:
2020年04期
页码:
77-82
栏目:
数理科学
出版日期:
2020-07-28

文章信息/Info

Title:
Research on the Optimization of Concentric Cooperation Strategy
文章编号:
2095-0411(2020)04-0077-06
作者:
王 琼1李 鑫2窦海波2刘卓欣2江兴方3
(1.常州大学 阿里云大数据学院,江苏 常州 213164; 2.常州大学 华罗庚学院,江苏 常州 213164; 3.常州大学 数理学院,江苏 常州 213164 )
Author(s):
WANG Qiong1 LI Xin2 DOU Haibo2 LIU Zhuoxin2 JIANG Xingfang3
(1. Aliyun School of Big Data, Changzhou University, Changzhou 213164, China; 2. Hua Loo Keng Honors College, Changzhou University, Changzhou 213164, China; 3. School of Mathematics and Physics, Changzhou University, Changzhou 213164, China)
关键词:
同心鼓运动 同心协力策略 鼓面倾角
Keywords:
collision recovery coefficient rotary inertia model hollow cylinder rigid body
分类号:
O 29
DOI:
10.3969/j.issn.2095-0411.2020.04.0011
文献标志码:
A
摘要:
将鼓视作空心圆柱刚体,引入碰撞恢复系数和转动惯量,同时以单个周期内队员做的功最少和休息时间最长为最优策略,分别构建理想状态和非理想状态下同心协力策略优化模型。通过实例讨论了队员发力情况对鼓面倾角的影响以及鼓面存在倾角时的策略优化问题。结果表明:非理想状态下鼓面存在倾角,为使球反弹后仍保持竖直方向,与合力相邻的两位队员发力时机和大小需不同于其他不参与调整的队员; 参与调整的两位队员相隔越远,对鼓面倾角的影响越小。
Abstract:
Concentric drum movement is a project that needs many people to work together. The drum is regarded as a hollow cylinder rigid body, and the collision recovery coefficient and rotary inertia model are introduced. At the same time, the optimal concentric cooperation strategy is to maximize the ratio of the rest time of team members and the work done by team members. The strategy optimization models of concentric cooperation under ideal and non-ideal conditions are constructed respectively. This paper discusses the effect of different force conditions on the angle of the drum surface and the optimization of the strategy when the angle of the drum surface existed. The results show that there is an angle of the drum surface in the non-ideal state. In order to keep the ball vertical after rebounding, the timing and force of the two members adjacent to the resultant force should be different from the other members who do not participate in the adjustment. The farther the distance between the two members involved in the adjustment, the less the effect on the drum inclination.

参考文献/References:

[1]江兴方, 谢建生, 唐丽. 物理实验[M]. 北京: 科学出版社, 2015.
[2]王检耀, 刘铸永, 洪嘉振. 基于两种接触模型的柔性体间多次微碰撞问题研究[J]. 振动与冲击, 2018, 37(11): 202-206.
[3]梅雪峰, 胡卸文, 罗刚, 等. 基于弹塑性理论的落石碰撞恢复系数和峰值冲击力研究[J]. 振动与冲击, 2019, 38(8): 14-20.
[4]章广成, 向欣, 唐辉明. 落石碰撞恢复系数的现场试验与数值计算[J]. 岩石力学与工程学报, 2011, 30(6): 1266-1273.
[5]葛藤, 贾智宏, 周克栋. 计算点接触碰撞恢复系数的一种理论模型[J]. 机械设计与研究, 2007, 23(3): 14-15, 22.
[6]AGMON S, DOUGLIS A, NIRENBERG L. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II[J]. Communications on Pure & Applied Mathematics, 1964, 17(1): 35-92.
[7]秦敢, 向守平. 力学与理论力学[M]. 北京:科学出版社, 2017:132-138.
[8]虞磊, 赵治华, 任启鸿, 等. 基于绝对节点坐标的柔性体碰撞仿真[J]. 清华大学学报(自然科学版), 2010(7): 173-178.
[9]KHAN I M, ANDERSON K S. A logarithmic complexity divide-and-conquer algorithm for multi-flexible-body dynamics including large deformations[J]. Multibody System Dynamics, 2015, 34(1):81-101.
[10]BAO R, RUI X T, TAO L, et al. Theoretical modeling and numerical solution methods for flexible multibody system dynamics[J]. Nonlinear Dynamics, 2019(98): 1519-1553.
[11]杨克昌. 均质圆柱类刚体对任意轴的转动惯量计算公式[J]. 力学与实践, 1983(5): 53-54.
[12]李元香, 项正龙, 夏界宁. 模拟退火算法的动力系统模型及收敛性分析[J]. 计算机学报, 2019, 42(6): 1161-1173.
[13]张良均, 杨坦, 肖刚, 等. Matlab数据分析与挖掘实战[M]. 北京: 机械工业出版社, 2016.

备注/Memo

备注/Memo:
收稿日期:2019-12-15。
作者简介:王琼(1981—),女,浙江金华人,硕士,讲师。E-mail:wangqiong@cczu.edu.cn
引用本文:王琼, 李鑫, 窦海波, 等. 同心协力策略优化研究[J]. 常州大学学报(自然科学版),2020,32(4):77-82.
更新日期/Last Update: 2020-07-30