参考文献/References:
[1]CHEN Q, ZHOU J, HAN Q, et al. Electrochemical enantioselective recognition of tryptophane enantiomers based on chiral ligand exchange[J]. Colloids Surf B, 2012, 92: 130-135.
[2]BAO L P, DAI J Y, YANG L, et al. Electrochemical recognition of tyrosine enantiomers based on chiral ligand exchange with sodium alginate as the chiral selector[J]. J Electrochem Soc, 2015, 162(7): H486-H491.
[3]WANG F, GONG W C, WANG L L, et al. Selective recognition of D-tryptophan from D/L-tryptophan mixtures in the presence of Cu(II)by electropolymerized L-lysine film[J]. Anal Biochem, 2016, 492: 30-33.
[4]TAO Y X, GU X G, DENG L H, et al. Chiral recognition of D-tryptophan by confining high-energy water molecules inside the cavity of copper-modified β-cyclodextrin[J]. J Phys Chem C, 2015, 119(15): 8183-8190.
[5]BAO L P, TAO Y X, GU X G, et al. Potato starch as a highly enantioselective system for temperature-dependent electrochemical recognition of tryptophan isomers[J]. Electrochem Commun, 2016, 64: 21-25.
[6]TAO Y X, GU X G, YANG B Z, et al. Electrochemical enantioselective recognition in a highly ordered self-assembly framework[J]. Anal Chem, 2017, 89(3): 1900-1906.
[7]GUO L L, YANG B Z, WU D T, et al. Chiral sensing platform based on the self-assemblies of diphenylalanine and oxalic acid[J]. Anal Chem, 2018, 90(8): 5451-5458.
[8]KONG Y, NI J H, WANG W C, et al. Enantioselective recognition of amino acids based on molecularly imprinted polyaniline electrode column[J]. Electrochim Acta, 2011, 56(11): 4070-4074.
[9]ZHANG J, TAN W S, TAO Y X, et al. A novel electrochemical chiral interface based on sandwich-structured molecularly imprinted SiO2/AuNPs/SiO2 for enantioselective recognition of cysteine isomers[J]. Electrochem Commun, 2018, 86: 57-62.
[10]ZHAO Q Q, YANG J P, ZHANG J, et al. Single-template molecularly imprinted chiral sensor for simultaneous recognition of alanine and tyrosine enantiomers[J]. Anal Chem, 2019, 91(19): 12546-12552.
[11]OKAMOTO Y, IKAI T. Chiral HPLC for efficient resolution of enantiomers[J]. Chem Soc Rev, 2008, 37(12): 2593-2608.
[12]KUANG X, MA Y, SU H, et al. High-performance liquid chromatographic enantioseparation of racemic drugs based on homochiral metal-organic framework[J]. Anal Chem, 2014, 86(2): 1277-1281.
[13]PIRKLE W H, HYUN M H, TSIPOURAS A, et al. A rational approach to the design of highly effective chiral stationary phases for the liquid chromatographic separation of enantiomers[J]. J Pharm Biomed Anal, 1984, 2(2): 173-181.
[14]HAN H K, HONG J H, CAREY J R, et al. Chiral recognition using a conformationally rigid chiral stationary phase derived from α-amino-ε-carprolactam[J]. J Liq Chromatogr Relat Technol, 2014, 37(19): 2725-2732.
[15]YU J, RYOO D H, LEE J M, et al. Synthesis and application of C2 and C3 symmetric(R)-phenylglycinol derived chiral stationary phases[J]. Chirality, 2016, 28(3): 186-191.
[16]IKAI T, YAMAMOTO C, KAMIGAITO M, et al. Immobilized polysaccharide-based chiral stationary phases for HPLC[J]. Polym J, 2006, 38(2): 91-108.
[17]CHANKVETADZE B. Recent developments on polysaccharide-based chiral stationary phases for liquid-phase separation of enantiomers[J]. J Chromatogr A, 2012, 1269: 26-51.
[18]BEZHITASHVILI L, BARDAVELIDZE A, ORDJONIKIDZE T, et al. Effect of pore-size optimization on the performance of polysaccharide-based superficially porous chiral stationary phases for the separation of enantiomers in high-performance liquid chromatography[J]. J Chromatogr A, 2017, 1482: 32-38.
[19]ALLENMARK S, BOMGREN B, BOREN H. Direct liquid chromatographic separation of enantiomers on immobilized protein stationary phases: III. optical resolution of a series of N-aroyl D, L-amino acids by high-performance liquid chromatography on bovine serum albumin covalently bound to silica[J]. J Chromatogr A, 1983, 264: 63-68.
[20]PFAUNMILLER E L, HARTMANN M, DUPPER C M, et al. Optimization of human serum albumin monoliths for chiral separations and high-performance affinity chromatography[J]. J Chromatogr A, 2012, 1269: 198-207.
[21]HE L, BEESLEY T E. Applications of enantiomeric gas chromatography: a review[J]. J Liq Chromatogr Relat Technol, 2005, 28(7/8): 1075-1114.
[22]ZHOU J, PEI W J, ZHENG X X, et al. Preparation and enantioseparation characteristics of a novel β-cyclodextrin derivative chiral stationary phase in high-performance liquid chromatography[J]. J Chromatogr Sci, 2014, 53(5): 676-679.
[23]ZHOU J, YANG B, TANG J, et al. A cationic cyclodextrin clicked bilayer chiral stationary phase for versatile chiral separation in HPLC[J]. New J Chem, 2018, 42(5): 3526-3533.
[24]DOTSEVI G, SOGAH Y, CRAM D J. Chromatographic optical resolution through chiral complexation of amino ester salts by a host covalently bound to silica gel[J]. J Am Chem Soc, 1975, 97(5): 1259-1261.
[25]HYUN M H. Liquid chromatographic enantioseparations on crown ether-based chiral stationary phases[J]. J Chromatogr A, 2016, 1467: 19-32.
[26]HROBONOVA K, LOMENOVA A. Molecularly imprinted polymer as stationary phase for HPLC separation of phenylalanine enantiomers[J]. Monatsh Chem, 2018, 149(5): 939-946.
[27]SHEN H F, DU G H, LIU K Y, et al. Synthesis and evaluation of pseudopeptide chiral stationary phases for enantioselective resolution[J]. J Chromatogr A, 2017, 1521: 53-62.
[28]ARMSTRONG D W, TANG Y, CHEN S, et al. Macrocyclic antibiotics as a new class of chiral selectors for liquid chromatography[J]. Anal Chem, 1994, 66(9): 1473-1484.
[29]HEFNAWY M M, ASIRI Y A, AL-ZOMAN N Z, et al. Stereoselective HPLC analysis of tertatolol in rat plasma using macrocyclic antibiotic chiral stationary phase[J]. Chirality, 2011, 23(4): 333-338.
[30]ILISZ I, BERKECZ R, PETER A. HPLC separation of amino acid enantiomers and small peptides on macrocyclic antibiotic-based chiral stationary phases: a review[J]. J Sep Sci, 2006, 29(10): 1305-1321.
[31]张虎, 沈芒芒, 童胜强, 等. 高效液相色谱手性流动相添加法拆分阿卓乳酸对映体[J]. 色谱, 2014, 32(6): 612-615.
[32]TONG S Q, ZHANG H, SHEN M M, et al. Enantioseparation of mandelic acid derivatives by high performance liquid chromatography with substituted β-cyclodextrin as chiral mobile phase additive and evaluation of inclusion complex formation[J]. J Chromatogr B, 2014, 962: 44-51.
[33]HU X Y, GUO X, SUN S, et al. Enantioseparation of nine indanone and tetralone derivatives by HPLC using carboxymethyl-β-cyclodextrin as the mobile phase additive[J]. Chirality, 2017, 29(1): 38-47.
[34]陶国忠, 郭耘, 卢冠忠, 等. 乳酸乙酯对映体和丙酮酸乙酯混合物的气相色谱分析[J]. 分析化学, 2007, 35(3): 447-450.
[35]CHEN L J, REISS P S, CHONG S Y, et al. Separation of rare gases and chiral molecules by selective binding in porous organic cages[J]. Nat Mater, 2014, 13(10): 954-960.
[36]DONG J Q, LIU Y, CUI Y. Chiral porous organic frameworks for asymmetric heterogeneous catalysis and gas chromatographic separation[J]. Chem Commun, 2014, 50(95): 14949-14952.
[37]ZHANG J H, XIE S M, CHEN L, et al. Homochiral porous organic cage with high selectivity for the separation of racemates in gas chromatography[J]. Anal Chem, 2015, 87(15): 7817-7824.
[38]ZHENG D D, WANG L, YANG T, et al. A porous metal-organic framework [Zn2(bdc)(L-lac)] as a coating material for capillary columns of gas chromatography[J]. Inorg Chem, 2017, 56(18): 11043-11049.
[39]XIE S M, FU N, LI L, et al. Homochiral metal-organic cage for gas chromatographic separations[J]. Anal Chem, 2018, 90(15): 9182-9188.
[40]LU J Y, YE F G, ZHANG A Z, et al. Preparation and characterization of silica monolith modified with bovine serum albumin-gold nanoparticles conjugates and its use as chiral stationary phases for capillary electrochromatography[J]. J Sep Sci, 2011, 34(16/17): 2329-2336.
[41]CONTINO A, MACCARRONE G, REMELLI M. Exploiting thermodynamic data to optimize the enantioseparation of underivatized amino acids in ligand exchange capillary electrophoresis[J]. Anal Bioanal Chem, 2013, 405(2/3): 951-959.
[42]HONG T T, ZHENG Y, HU W W, et al. Preparation and evaluation of bovine serum albumin immobilized chiral monolithic column for affinity capillary electrochromatography[J]. Anal Biochem, 2014, 464: 43-50.
[43]袁瑞娟, 王雄飞, 詹雪艳, 等. 磺酸化β-环糊精聚合物的合成及其在毛细管电泳手性拆分中的应用[J]. 分析化学, 2013, 41(4): 559-564.
[44]JIANG J F, MU X Y, QIAO J, et al. New chiral ligand exchange capillary electrophoresis system with chiral amino amide ionic liquids as ligands[J]. Talanta, 2017, 175: 451-456.
[45]ZHANG Q, ZHANG J, XUE S, et al. Enhanced enantioselectivity of native-α-cyclodextrins by the synergy of chiral ionic liquids in capillary electrophoresis[J]. J Sep Sci, 2018, 41(24): 4525-4532.
[46]MALLIK R, JIANG T, HAGE D S. High-performance affinity monolith chromatography: development and evaluation of human serum albumin columns[J]. Anal Chem, 2004, 76(23): 7013-7022.
[47]GERYK R, KALIKOVA K, SCHMID M G, et al. Enantioselective separation of biologically active basic compounds in ultra-performance supercritical fluid chromatography[J]. Anal Chim Acta, 2016, 932: 98-105.
[48]SEGAWA H, IWATA Y T, YAMAMURO T, et al. Enantioseparation of methamphetamine by supercritical fluid chromatography with cellulose-based packed column[J]. Forensic Sci Int, 2017, 273: 39-44.
[49]WEST C, KONJARIA M L, SHASHVIASHVILI N, et al. Enantioseparation of novel chiral sulfoxides on chlorinated polysaccharide stationary phases in supercritical fluid chromatography[J]. J Chromatogr A, 2017, 1499: 174-182.
[50]曹石, 曾丽丽, 谢菁, 等. 席夫碱Cu(II)络合物的超分子螺旋手性及其手性光谱[J]. 物理化学学报, 2017, 33(12): 2480-2490.
[51]YANG J P, YU Y, WU D T, et al. Coinduction of a chiral microenvironment in polypyrrole by overoxidation and camphorsulfonic acid for electrochemical chirality sensing[J]. Anal Chem, 2018, 90(15): 9551-9558.
[52]BENTLEY K W, NAM Y G, MURPHY J M, et al. Chirality sensing of amines, diamines, amino acids, amino alcohols, and α-hydroxy acids with a single probe[J]. J Am Chem Soc, 2013, 135(48): 18052-18055.
[53]LYNCH C C, ZEUS A, WOLF C. Chiroptical sensing of unprotected amino acids, hydroxy acids, amino alcohols, amines and carboxylic acids with metal salts[J]. Chem Commun, 2019, 55(44): 6297-6300.
[54]BOMBELLI C, BOROCCI S, LUPI F, et al. Chiral recognition of dipeptides in a biomembrane model[J]. J Am Chem Soc, 2004, 126(41): 13354-13362.
[55]DODZIUK H, KOZMINSKI W, EJCHART A. NMR studies of chiral recognition by cyclodextrins[J]. Chirality, 2004, 16(2): 90-105.
[56]WU D T, ZHOU Y, CAI P F, et al. Specific cooperative effect for the enantiomeric separation of amino acids using aqueous two-phase systems with task-specific ionic liquids[J]. J Chromatogr A, 2015, 1395: 65-72.
[57]CHEN Z X, YANG M X, SUN Z F, et al. Chiral discrimination by a binuclear Pd complex sensor using 31P {1H} NMR[J]. Anal Chem, 2019, 91(22): 14591-14596.
[58]BAO L P, CHEN X H, YANG B Z, et al. Construction of electrochemical chiral interfaces with integrated polysaccharides via amidation[J]. ACS Appl Mater Interfaces, 2016, 8(33): 21710-21720.
[59]WU D T, YIN Q H, CAI P F, et al. Enhancement of visual chiral sensing via an anion-binding approach: novel ionic liquids as the chiral selectors[J]. Anal Chim Acta, 2017, 962: 97-103.
[60]WU S S, YIN Z Z, WU D T, et al. Chiral enantioselective assemblies induced from achiral porphyrin by L-and D-lysine[J]. Langmuir, 2019, 35(51): 16761-16769.
[61]GARCIA C, GUYOT J, JEMINET G, et al. Chiral recognition properties of spiroacetal polyethers using electrospray ionisation mass spectrometry[J]. Tetrahedron Lett, 1999, 40(27): 4997-5000.
[62]CHENG Y, HERCULES D M. Measurement of chiral complexes of cyclodextrins and amino acids by electrospray ionization time of flight mass spectrometry[J]. J Mass Spectrom, 2001, 36(7): 834-836.
[63]WANG L, CHAI Y F, NI Z Q, et al. Qualitative and quantitative analysis of enantiomers by mass spectrometry: application of a simple chiral chloride probe via rapid in-situ reaction[J]. Anal Chim Acta, 2014, 809: 104-108.
[64]WANG L, JIN Z, WANG X Y, et al. Pair of stereodynamic chiral benzylicaldehyde probes for determination of absolute configuration of amino acid residues in peptides by mass spectrometry[J]. Anal Chem, 2017, 89(22): 11902-11907.
[65]YU X Y, YAO Z P. Chiral differentiation of amino acids through binuclear copper bound tetramers by ion mobility mass spectrometry[J]. Anal Chim Acta, 2017, 981: 62-70.
[66]ZHANG X Y, CHEN S X, XU P, et al. Synthesis of new chiral fluorescent sensors and their applications in enantioselective discrimination[J]. Tetrahedron Lett, 2017, 58(29): 2850-2855.
[67]KAWAI M, HOSHI A, NISHIYABU R, et al. Fluorescent chirality recognition by simple boronate ensembles with aggregation-induced emission capability[J]. Chem Commun, 2017, 53(73): 10144-10147.
[68]WU D T, YU Y, ZHANG J, et al. Chiral poly(ionic liquid)with nonconjugated backbone as a fluorescent enantioselective sensor for phenylalaninol and tryptophan[J]. ACS Appl Mater Interfaces, 2018, 10(27): 23362-23368.
[69]HUANG Z, YU S S, WEN K L, et al. Zn(II)promoted dramatic enhancement in the enantioselective fluorescent recognition of functional chiral amines by a chiral aldehyde[J]. Chem Sci, 2014, 5(9): 3457-3462.
[70]ZHU Y Y, WU X D, GU S X, et al. Free amino acid recognition: a bisbinaphthyl-based fluorescent probe with high enantioselectivity[J]. J Am Chem Soc, 2018, 141(1): 175-181.
[71]ZHU Y Y, WU X D, ABED M, et al. Biphasic enantioselective fluorescent recognition of amino acids by a fluorophilic probe[J]. Chem Eur J, 2019, 25(33): 7866-7873.
[72]KONG Y, ZHAO W, YAO S P, et al. Molecularly imprinted polypyrrole prepared by electrodeposition for the selective recognition of tryptophan enantiomers[J]. J Appl Polym Sci, 2010, 115(4): 1952-1957.
[73]SU W C, ZHANG W G, ZHANG S, et al. A novel strategy for rapid real-time chiral discrimination of enantiomers using serum albumin functionalized QCM biosensor[J]. Biasness Bioelectron, 2009, 25(2): 488-492.
[74]TEMEL F, ERDEMIR S, TABAKCI B, et al. Selective chiral recognition of alanine enantiomers by chiral calix [4] arene coated quartz crystal microbalance sensors[J]. Anal Bioanal Chem, 2019, 411(12): 2675-2685.
[75]ZHU G B, KINGSFORD O J, YI Y H, et al. Recent advances in electrochemical chiral recognition[J]. J Electrochem Soc, 2019, 166(6): H205-H217.
[76]MATSUNAGA M, UENO T, NAKANISHI T, et al. Enantioselective potential response of a human serum albumin-modified ITO electrode for tryptophan[J]. Electrochem Commun, 2008, 10(12): 1844-1846.
[77]NIE R Q, BO X J, WANG H, et al. Chiral electrochemical sensing for tyrosine enantiomers on glassy carbon electrode modified with cysteic acid[J]. Electrochem Commun, 2013, 27: 112-115.
[78]OU J, TAO Y X, XUE J J, et al. Electrochemical enantiorecognition of tryptophan enantiomers based on graphene quantum dots-chitosan composite film[J]. Electrochem Commun, 2015, 57: 5-9.
[79]TAO Y X, DAI J Y, KONG Y, et al. Temperature-sensitive electrochemical recognition of tryptophan enantiomers based on β-cyclodextrin self-assembled on poly(L-glutamic acid)[J]. Anal Chem, 2014, 86(5): 2633-2639.
[80]GU J W, DAI H X, KONG Y, et al. Chiral electrochemical recognition of cysteine enantiomers with molecularly imprinted overoxidized polypyrrole-Au nanoparticles[J]. Synth Met, 2016, 222: 137-143.
[81]YU Y, TAO Y X, YANG B Z, et al. Smart chiral sensing platform with alterable enantioselectivity[J]. Anal Chem, 2017, 89(23): 12930-12937.
[82]WU D T, YANG J P, PENG Y G, et al. Highly enantioselective recognition of various acids using polymerized chiral ionic liquid as electrode modifies[J]. Sens Actuators B, 2019, 282: 164-170.
[83]YE Q M, GUO L L, WU D T, et al. Covalent functionalization of bovine serum albumin with graphene quantum dots for stereospecific molecular recognition[J]. Anal Chem, 2019, 91(18): 11864-11871.
[84]SEVERIN E J, SANNER R D, DOLEMAN B J, et al. Differential detection of enantiomeric gaseous analytes using carbon black-chiral polymer composite, chemically sensitive resistors[J]. Anal Chem, 1998, 70(7): 1440-1443.
[85]HUANG Y H, GUO D M, ZHANG Q, et al. Chiral sensing for electrochemical impedance spectroscopy recognition of lysine enantiomers based on a nanostructured composite[J]. RSC Adv, 2014, 4(63): 33457-33461.
[86]DING S S, CAO S M, ZHU A W, et al. Wettability switching of electrode for signal amplification: conversion of conformational change of stimuli-responsive polymer into enhanced electrochemical chiral analysis[J]. Anal Chem, 2016, 88(24): 12219-12226.