[1]孔 泳,赵倩倩,杨嘉佩,等.手性识别技术研究进展[J].常州大学学报(自然科学版),2021,33(02):24-36.[doi:10.3969/j.issn.2095-0411.2021.02.004]
 KONG Yong,ZHAO Qianqian,YANG Jiapei,et al.Progress on Chiral Recognition Techniques[J].Journal of Changzhou University(Natural Science Edition),2021,33(02):24-36.[doi:10.3969/j.issn.2095-0411.2021.02.004]
点击复制

手性识别技术研究进展()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第33卷
期数:
2021年02期
页码:
24-36
栏目:
化学化工
出版日期:
2021-03-28

文章信息/Info

Title:
Progress on Chiral Recognition Techniques
文章编号:
2095-0411(2021)02-0024-13
作者:
孔 泳1 赵倩倩1 杨嘉佩1 尹争志2 吴大同1 陶永新1
(1. 常州大学 石油化工学院, 江苏 常州 213164; 2. 嘉兴学院 生物与化学工程学院, 浙江 嘉兴 314001)
Author(s):
KONG Yong1 ZHAO Qianqian1 YANG Jiapei1 YIN Zhengzhi2 WU Datong1 TAO Yongxin1
(1. School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; 2. College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China)
关键词:
手性 对映异构体 手性识别机理 手性识别技术
Keywords:
chirality enantiomers chiral recognition mechanisms chiral recognition techniques
分类号:
O 657
DOI:
10.3969/j.issn.2095-0411.2021.02.004
文献标志码:
A
摘要:
手性在自然界中无处不在, 手性对映体的理化性质极其相似, 但手性对映体特别是手性药物在生理活性等方面却表现出明显的差异, 因此, 有关手性对映体的手性识别对分析化学和生命科学的研究都具有重要的意义。近年来, 虽然有关手性识别技术的研究越来越多, 但开发快速灵敏、操作简单的手性识别技术仍是一项重要且具有挑战性的任务。首先总结了已被广泛认可的3种手性识别机理, 接着结合本课题组的研究工作对一些常见的手性识别技术进行了归纳和总结, 分析了已有手性识别技术的优缺点, 为开发新型高效的手性识别技术提供了思路。
Abstract:
Chirality is ubiquitous in nature. Enantiomers have highly similar physicochemical properties, however, enantiomers especially chiral drugs behave rather differently in physiological activity. Therefore, it is of significant importance in analytical chemistry and life sciences for the chiral recognition of enantiomers. Although more and more attention has been paid to the development of chiral recognition techniques in recent years, it is still an important and challenging task to develop novel chiral recognition technologies which is rapid, sensitive and simple to operate. In this paper, we first reviewed the widely accepted three mechanisms of chiral recognition, and then summarized some common chiral recognition techniques including those reported by our group and outlined the advantages and limits of these known chiral recognition techniques, which is important for further development of high-efficient chiral recognition techniques.

参考文献/References:

[1]CHEN Q, ZHOU J, HAN Q, et al. Electrochemical enantioselective recognition of tryptophane enantiomers based on chiral ligand exchange[J]. Colloids Surf B, 2012, 92: 130-135.
[2]BAO L P, DAI J Y, YANG L, et al. Electrochemical recognition of tyrosine enantiomers based on chiral ligand exchange with sodium alginate as the chiral selector[J]. J Electrochem Soc, 2015, 162(7): H486-H491.
[3]WANG F, GONG W C, WANG L L, et al. Selective recognition of D-tryptophan from D/L-tryptophan mixtures in the presence of Cu(II)by electropolymerized L-lysine film[J]. Anal Biochem, 2016, 492: 30-33.
[4]TAO Y X, GU X G, DENG L H, et al. Chiral recognition of D-tryptophan by confining high-energy water molecules inside the cavity of copper-modified β-cyclodextrin[J]. J Phys Chem C, 2015, 119(15): 8183-8190.
[5]BAO L P, TAO Y X, GU X G, et al. Potato starch as a highly enantioselective system for temperature-dependent electrochemical recognition of tryptophan isomers[J]. Electrochem Commun, 2016, 64: 21-25.
[6]TAO Y X, GU X G, YANG B Z, et al. Electrochemical enantioselective recognition in a highly ordered self-assembly framework[J]. Anal Chem, 2017, 89(3): 1900-1906.
[7]GUO L L, YANG B Z, WU D T, et al. Chiral sensing platform based on the self-assemblies of diphenylalanine and oxalic acid[J]. Anal Chem, 2018, 90(8): 5451-5458.
[8]KONG Y, NI J H, WANG W C, et al. Enantioselective recognition of amino acids based on molecularly imprinted polyaniline electrode column[J]. Electrochim Acta, 2011, 56(11): 4070-4074.
[9]ZHANG J, TAN W S, TAO Y X, et al. A novel electrochemical chiral interface based on sandwich-structured molecularly imprinted SiO2/AuNPs/SiO2 for enantioselective recognition of cysteine isomers[J]. Electrochem Commun, 2018, 86: 57-62.
[10]ZHAO Q Q, YANG J P, ZHANG J, et al. Single-template molecularly imprinted chiral sensor for simultaneous recognition of alanine and tyrosine enantiomers[J]. Anal Chem, 2019, 91(19): 12546-12552.
[11]OKAMOTO Y, IKAI T. Chiral HPLC for efficient resolution of enantiomers[J]. Chem Soc Rev, 2008, 37(12): 2593-2608.
[12]KUANG X, MA Y, SU H, et al. High-performance liquid chromatographic enantioseparation of racemic drugs based on homochiral metal-organic framework[J]. Anal Chem, 2014, 86(2): 1277-1281.
[13]PIRKLE W H, HYUN M H, TSIPOURAS A, et al. A rational approach to the design of highly effective chiral stationary phases for the liquid chromatographic separation of enantiomers[J]. J Pharm Biomed Anal, 1984, 2(2): 173-181.
[14]HAN H K, HONG J H, CAREY J R, et al. Chiral recognition using a conformationally rigid chiral stationary phase derived from α-amino-ε-carprolactam[J]. J Liq Chromatogr Relat Technol, 2014, 37(19): 2725-2732.
[15]YU J, RYOO D H, LEE J M, et al. Synthesis and application of C2 and C3 symmetric(R)-phenylglycinol derived chiral stationary phases[J]. Chirality, 2016, 28(3): 186-191.
[16]IKAI T, YAMAMOTO C, KAMIGAITO M, et al. Immobilized polysaccharide-based chiral stationary phases for HPLC[J]. Polym J, 2006, 38(2): 91-108.
[17]CHANKVETADZE B. Recent developments on polysaccharide-based chiral stationary phases for liquid-phase separation of enantiomers[J]. J Chromatogr A, 2012, 1269: 26-51.
[18]BEZHITASHVILI L, BARDAVELIDZE A, ORDJONIKIDZE T, et al. Effect of pore-size optimization on the performance of polysaccharide-based superficially porous chiral stationary phases for the separation of enantiomers in high-performance liquid chromatography[J]. J Chromatogr A, 2017, 1482: 32-38.
[19]ALLENMARK S, BOMGREN B, BOREN H. Direct liquid chromatographic separation of enantiomers on immobilized protein stationary phases: III. optical resolution of a series of N-aroyl D, L-amino acids by high-performance liquid chromatography on bovine serum albumin covalently bound to silica[J]. J Chromatogr A, 1983, 264: 63-68.
[20]PFAUNMILLER E L, HARTMANN M, DUPPER C M, et al. Optimization of human serum albumin monoliths for chiral separations and high-performance affinity chromatography[J]. J Chromatogr A, 2012, 1269: 198-207.
[21]HE L, BEESLEY T E. Applications of enantiomeric gas chromatography: a review[J]. J Liq Chromatogr Relat Technol, 2005, 28(7/8): 1075-1114.
[22]ZHOU J, PEI W J, ZHENG X X, et al. Preparation and enantioseparation characteristics of a novel β-cyclodextrin derivative chiral stationary phase in high-performance liquid chromatography[J]. J Chromatogr Sci, 2014, 53(5): 676-679.
[23]ZHOU J, YANG B, TANG J, et al. A cationic cyclodextrin clicked bilayer chiral stationary phase for versatile chiral separation in HPLC[J]. New J Chem, 2018, 42(5): 3526-3533.
[24]DOTSEVI G, SOGAH Y, CRAM D J. Chromatographic optical resolution through chiral complexation of amino ester salts by a host covalently bound to silica gel[J]. J Am Chem Soc, 1975, 97(5): 1259-1261.
[25]HYUN M H. Liquid chromatographic enantioseparations on crown ether-based chiral stationary phases[J]. J Chromatogr A, 2016, 1467: 19-32.
[26]HROBONOVA K, LOMENOVA A. Molecularly imprinted polymer as stationary phase for HPLC separation of phenylalanine enantiomers[J]. Monatsh Chem, 2018, 149(5): 939-946.
[27]SHEN H F, DU G H, LIU K Y, et al. Synthesis and evaluation of pseudopeptide chiral stationary phases for enantioselective resolution[J]. J Chromatogr A, 2017, 1521: 53-62.
[28]ARMSTRONG D W, TANG Y, CHEN S, et al. Macrocyclic antibiotics as a new class of chiral selectors for liquid chromatography[J]. Anal Chem, 1994, 66(9): 1473-1484.
[29]HEFNAWY M M, ASIRI Y A, AL-ZOMAN N Z, et al. Stereoselective HPLC analysis of tertatolol in rat plasma using macrocyclic antibiotic chiral stationary phase[J]. Chirality, 2011, 23(4): 333-338.
[30]ILISZ I, BERKECZ R, PETER A. HPLC separation of amino acid enantiomers and small peptides on macrocyclic antibiotic-based chiral stationary phases: a review[J]. J Sep Sci, 2006, 29(10): 1305-1321.
[31]张虎, 沈芒芒, 童胜强, 等. 高效液相色谱手性流动相添加法拆分阿卓乳酸对映体[J]. 色谱, 2014, 32(6): 612-615.
[32]TONG S Q, ZHANG H, SHEN M M, et al. Enantioseparation of mandelic acid derivatives by high performance liquid chromatography with substituted β-cyclodextrin as chiral mobile phase additive and evaluation of inclusion complex formation[J]. J Chromatogr B, 2014, 962: 44-51.
[33]HU X Y, GUO X, SUN S, et al. Enantioseparation of nine indanone and tetralone derivatives by HPLC using carboxymethyl-β-cyclodextrin as the mobile phase additive[J]. Chirality, 2017, 29(1): 38-47.
[34]陶国忠, 郭耘, 卢冠忠, 等. 乳酸乙酯对映体和丙酮酸乙酯混合物的气相色谱分析[J]. 分析化学, 2007, 35(3): 447-450.
[35]CHEN L J, REISS P S, CHONG S Y, et al. Separation of rare gases and chiral molecules by selective binding in porous organic cages[J]. Nat Mater, 2014, 13(10): 954-960.
[36]DONG J Q, LIU Y, CUI Y. Chiral porous organic frameworks for asymmetric heterogeneous catalysis and gas chromatographic separation[J]. Chem Commun, 2014, 50(95): 14949-14952.
[37]ZHANG J H, XIE S M, CHEN L, et al. Homochiral porous organic cage with high selectivity for the separation of racemates in gas chromatography[J]. Anal Chem, 2015, 87(15): 7817-7824.
[38]ZHENG D D, WANG L, YANG T, et al. A porous metal-organic framework [Zn2(bdc)(L-lac)] as a coating material for capillary columns of gas chromatography[J]. Inorg Chem, 2017, 56(18): 11043-11049.
[39]XIE S M, FU N, LI L, et al. Homochiral metal-organic cage for gas chromatographic separations[J]. Anal Chem, 2018, 90(15): 9182-9188.
[40]LU J Y, YE F G, ZHANG A Z, et al. Preparation and characterization of silica monolith modified with bovine serum albumin-gold nanoparticles conjugates and its use as chiral stationary phases for capillary electrochromatography[J]. J Sep Sci, 2011, 34(16/17): 2329-2336.
[41]CONTINO A, MACCARRONE G, REMELLI M. Exploiting thermodynamic data to optimize the enantioseparation of underivatized amino acids in ligand exchange capillary electrophoresis[J]. Anal Bioanal Chem, 2013, 405(2/3): 951-959.
[42]HONG T T, ZHENG Y, HU W W, et al. Preparation and evaluation of bovine serum albumin immobilized chiral monolithic column for affinity capillary electrochromatography[J]. Anal Biochem, 2014, 464: 43-50.
[43]袁瑞娟, 王雄飞, 詹雪艳, 等. 磺酸化β-环糊精聚合物的合成及其在毛细管电泳手性拆分中的应用[J]. 分析化学, 2013, 41(4): 559-564.
[44]JIANG J F, MU X Y, QIAO J, et al. New chiral ligand exchange capillary electrophoresis system with chiral amino amide ionic liquids as ligands[J]. Talanta, 2017, 175: 451-456.
[45]ZHANG Q, ZHANG J, XUE S, et al. Enhanced enantioselectivity of native-α-cyclodextrins by the synergy of chiral ionic liquids in capillary electrophoresis[J]. J Sep Sci, 2018, 41(24): 4525-4532.
[46]MALLIK R, JIANG T, HAGE D S. High-performance affinity monolith chromatography: development and evaluation of human serum albumin columns[J]. Anal Chem, 2004, 76(23): 7013-7022.
[47]GERYK R, KALIKOVA K, SCHMID M G, et al. Enantioselective separation of biologically active basic compounds in ultra-performance supercritical fluid chromatography[J]. Anal Chim Acta, 2016, 932: 98-105.
[48]SEGAWA H, IWATA Y T, YAMAMURO T, et al. Enantioseparation of methamphetamine by supercritical fluid chromatography with cellulose-based packed column[J]. Forensic Sci Int, 2017, 273: 39-44.
[49]WEST C, KONJARIA M L, SHASHVIASHVILI N, et al. Enantioseparation of novel chiral sulfoxides on chlorinated polysaccharide stationary phases in supercritical fluid chromatography[J]. J Chromatogr A, 2017, 1499: 174-182.
[50]曹石, 曾丽丽, 谢菁, 等. 席夫碱Cu(II)络合物的超分子螺旋手性及其手性光谱[J]. 物理化学学报, 2017, 33(12): 2480-2490.
[51]YANG J P, YU Y, WU D T, et al. Coinduction of a chiral microenvironment in polypyrrole by overoxidation and camphorsulfonic acid for electrochemical chirality sensing[J]. Anal Chem, 2018, 90(15): 9551-9558.
[52]BENTLEY K W, NAM Y G, MURPHY J M, et al. Chirality sensing of amines, diamines, amino acids, amino alcohols, and α-hydroxy acids with a single probe[J]. J Am Chem Soc, 2013, 135(48): 18052-18055.
[53]LYNCH C C, ZEUS A, WOLF C. Chiroptical sensing of unprotected amino acids, hydroxy acids, amino alcohols, amines and carboxylic acids with metal salts[J]. Chem Commun, 2019, 55(44): 6297-6300.
[54]BOMBELLI C, BOROCCI S, LUPI F, et al. Chiral recognition of dipeptides in a biomembrane model[J]. J Am Chem Soc, 2004, 126(41): 13354-13362.
[55]DODZIUK H, KOZMINSKI W, EJCHART A. NMR studies of chiral recognition by cyclodextrins[J]. Chirality, 2004, 16(2): 90-105.
[56]WU D T, ZHOU Y, CAI P F, et al. Specific cooperative effect for the enantiomeric separation of amino acids using aqueous two-phase systems with task-specific ionic liquids[J]. J Chromatogr A, 2015, 1395: 65-72.
[57]CHEN Z X, YANG M X, SUN Z F, et al. Chiral discrimination by a binuclear Pd complex sensor using 31P {1H} NMR[J]. Anal Chem, 2019, 91(22): 14591-14596.
[58]BAO L P, CHEN X H, YANG B Z, et al. Construction of electrochemical chiral interfaces with integrated polysaccharides via amidation[J]. ACS Appl Mater Interfaces, 2016, 8(33): 21710-21720.
[59]WU D T, YIN Q H, CAI P F, et al. Enhancement of visual chiral sensing via an anion-binding approach: novel ionic liquids as the chiral selectors[J]. Anal Chim Acta, 2017, 962: 97-103.
[60]WU S S, YIN Z Z, WU D T, et al. Chiral enantioselective assemblies induced from achiral porphyrin by L-and D-lysine[J]. Langmuir, 2019, 35(51): 16761-16769.
[61]GARCIA C, GUYOT J, JEMINET G, et al. Chiral recognition properties of spiroacetal polyethers using electrospray ionisation mass spectrometry[J]. Tetrahedron Lett, 1999, 40(27): 4997-5000.
[62]CHENG Y, HERCULES D M. Measurement of chiral complexes of cyclodextrins and amino acids by electrospray ionization time of flight mass spectrometry[J]. J Mass Spectrom, 2001, 36(7): 834-836.
[63]WANG L, CHAI Y F, NI Z Q, et al. Qualitative and quantitative analysis of enantiomers by mass spectrometry: application of a simple chiral chloride probe via rapid in-situ reaction[J]. Anal Chim Acta, 2014, 809: 104-108.
[64]WANG L, JIN Z, WANG X Y, et al. Pair of stereodynamic chiral benzylicaldehyde probes for determination of absolute configuration of amino acid residues in peptides by mass spectrometry[J]. Anal Chem, 2017, 89(22): 11902-11907.
[65]YU X Y, YAO Z P. Chiral differentiation of amino acids through binuclear copper bound tetramers by ion mobility mass spectrometry[J]. Anal Chim Acta, 2017, 981: 62-70.
[66]ZHANG X Y, CHEN S X, XU P, et al. Synthesis of new chiral fluorescent sensors and their applications in enantioselective discrimination[J]. Tetrahedron Lett, 2017, 58(29): 2850-2855.
[67]KAWAI M, HOSHI A, NISHIYABU R, et al. Fluorescent chirality recognition by simple boronate ensembles with aggregation-induced emission capability[J]. Chem Commun, 2017, 53(73): 10144-10147.
[68]WU D T, YU Y, ZHANG J, et al. Chiral poly(ionic liquid)with nonconjugated backbone as a fluorescent enantioselective sensor for phenylalaninol and tryptophan[J]. ACS Appl Mater Interfaces, 2018, 10(27): 23362-23368.
[69]HUANG Z, YU S S, WEN K L, et al. Zn(II)promoted dramatic enhancement in the enantioselective fluorescent recognition of functional chiral amines by a chiral aldehyde[J]. Chem Sci, 2014, 5(9): 3457-3462.
[70]ZHU Y Y, WU X D, GU S X, et al. Free amino acid recognition: a bisbinaphthyl-based fluorescent probe with high enantioselectivity[J]. J Am Chem Soc, 2018, 141(1): 175-181.
[71]ZHU Y Y, WU X D, ABED M, et al. Biphasic enantioselective fluorescent recognition of amino acids by a fluorophilic probe[J]. Chem Eur J, 2019, 25(33): 7866-7873.
[72]KONG Y, ZHAO W, YAO S P, et al. Molecularly imprinted polypyrrole prepared by electrodeposition for the selective recognition of tryptophan enantiomers[J]. J Appl Polym Sci, 2010, 115(4): 1952-1957.
[73]SU W C, ZHANG W G, ZHANG S, et al. A novel strategy for rapid real-time chiral discrimination of enantiomers using serum albumin functionalized QCM biosensor[J]. Biasness Bioelectron, 2009, 25(2): 488-492.
[74]TEMEL F, ERDEMIR S, TABAKCI B, et al. Selective chiral recognition of alanine enantiomers by chiral calix [4] arene coated quartz crystal microbalance sensors[J]. Anal Bioanal Chem, 2019, 411(12): 2675-2685.
[75]ZHU G B, KINGSFORD O J, YI Y H, et al. Recent advances in electrochemical chiral recognition[J]. J Electrochem Soc, 2019, 166(6): H205-H217.
[76]MATSUNAGA M, UENO T, NAKANISHI T, et al. Enantioselective potential response of a human serum albumin-modified ITO electrode for tryptophan[J]. Electrochem Commun, 2008, 10(12): 1844-1846.
[77]NIE R Q, BO X J, WANG H, et al. Chiral electrochemical sensing for tyrosine enantiomers on glassy carbon electrode modified with cysteic acid[J]. Electrochem Commun, 2013, 27: 112-115.
[78]OU J, TAO Y X, XUE J J, et al. Electrochemical enantiorecognition of tryptophan enantiomers based on graphene quantum dots-chitosan composite film[J]. Electrochem Commun, 2015, 57: 5-9.
[79]TAO Y X, DAI J Y, KONG Y, et al. Temperature-sensitive electrochemical recognition of tryptophan enantiomers based on β-cyclodextrin self-assembled on poly(L-glutamic acid)[J]. Anal Chem, 2014, 86(5): 2633-2639.
[80]GU J W, DAI H X, KONG Y, et al. Chiral electrochemical recognition of cysteine enantiomers with molecularly imprinted overoxidized polypyrrole-Au nanoparticles[J]. Synth Met, 2016, 222: 137-143.
[81]YU Y, TAO Y X, YANG B Z, et al. Smart chiral sensing platform with alterable enantioselectivity[J]. Anal Chem, 2017, 89(23): 12930-12937.
[82]WU D T, YANG J P, PENG Y G, et al. Highly enantioselective recognition of various acids using polymerized chiral ionic liquid as electrode modifies[J]. Sens Actuators B, 2019, 282: 164-170.
[83]YE Q M, GUO L L, WU D T, et al. Covalent functionalization of bovine serum albumin with graphene quantum dots for stereospecific molecular recognition[J]. Anal Chem, 2019, 91(18): 11864-11871.
[84]SEVERIN E J, SANNER R D, DOLEMAN B J, et al. Differential detection of enantiomeric gaseous analytes using carbon black-chiral polymer composite, chemically sensitive resistors[J]. Anal Chem, 1998, 70(7): 1440-1443.
[85]HUANG Y H, GUO D M, ZHANG Q, et al. Chiral sensing for electrochemical impedance spectroscopy recognition of lysine enantiomers based on a nanostructured composite[J]. RSC Adv, 2014, 4(63): 33457-33461.
[86]DING S S, CAO S M, ZHU A W, et al. Wettability switching of electrode for signal amplification: conversion of conformational change of stimuli-responsive polymer into enhanced electrochemical chiral analysis[J]. Anal Chem, 2016, 88(24): 12219-12226.

备注/Memo

备注/Memo:
收稿日期:2020-08-02。
基金项目:国家自然科学基金资助项目(21775013); 浙江省自然科学基金资助项目(LY18B050005)。
作者简介:孔泳(1976—), 男, 江苏泰州人, 博士, 教授。E-mail: yzkongyong@cczu.edu.cn
引用本文:孔泳, 赵倩倩, 杨嘉佩, 等. 手性识别技术研究进展[J]. 常州大学学报(自然科学版), 2021, 33(2): 24-36.
更新日期/Last Update: 1900-01-01