[1]唐琪雯,井德水,南温暖.甘油对聚苯并咪唑基膜电极结构和性能的影响[J].常州大学学报(自然科学版),2021,33(06):37-42.[doi:10.3969/j.issn.2095-0411.2021.06.006]
 TANG Qiwen,JING Deshui,NAN Wennuan.Influence of Glycerol on the Structure and Performance of PBI Based Membrane Electrode Assemblies[J].Journal of Changzhou University(Natural Science Edition),2021,33(06):37-42.[doi:10.3969/j.issn.2095-0411.2021.06.006]
点击复制

甘油对聚苯并咪唑基膜电极结构和性能的影响()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第33卷
期数:
2021年06期
页码:
37-42
栏目:
化学化工
出版日期:
2021-11-28

文章信息/Info

Title:
Influence of Glycerol on the Structure and Performance of PBI Based Membrane Electrode Assemblies
文章编号:
2095-0411(2021)06-0037-06
作者:
唐琪雯井德水南温暖
(常州博能新能源有限公司,江苏常州213100)
Author(s):
TANG Qiwen JING Deshui NAN Wennuan
(Changzhou Palcan New Energy Co., Ltd., Changzhou 213100, China)
关键词:
高温质子交换膜燃料电池 膜电极 孔结构 活化
Keywords:
HT-PEMFC MEA pore structure break-in
分类号:
TK 91
DOI:
10.3969/j.issn.2095-0411.2021.06.006
文献标志码:
A
摘要:
为使膜电极发挥最佳性能, 一般需要对其进行活化, 而膜电极的孔结构往往对活化起到关键性作用。通过在催化剂浆料中添加不同含量的甘油, 制备了不同孔结构的膜电极, 并考察了甘油含量对聚苯并咪唑(PBI)基膜电极的结构和性能的影响。结果表明:随着甘油含量增加, 100 μm左右的大孔含量随之增加, 气体扩散电极表面接触角依次降低; 膜电极性能达到平稳所需的时间越短, 活化前后膜电极性能提升的幅度越小; 当甘油含量进一步提升至3.0 mg/cm2时, 膜电极的性能却出现了明显的下降, 最佳甘油含量为1.5 mg/cm2
Abstract:
In order to maximize the performance of membrane electrode assembly(MEA), it is necessary to activate it. The pore structure of MEA often plays a key role to activation. In this paper, the MEAs with different pore structure was prepared by adding different content of glycerol into catalyst slurry, and the effect of glycerol content on the structure and performance of PBI based MEAs was investigated. The results showed that, with the increase of glycerol content, the macropore content of about 100 μm increased, and the surface contact angle of GDE decreased in turn.The shorter the time reguired for the performance of MEA to reach stability, the smaller the improvement of MEA performance before and after activation.However, when the glycerol content increased to 3.0 mg/cm2, the performance of the MEA decreased significantly. The optimum glycerol content was 1.5 mg/cm2.

参考文献/References:

[1]ARAYA S S, ZHOU F, LISO V, et al. A comprehensive review of PBI-based high temperature PEM fuel cells[J]. International Journal of Hydrogen Energy, 2016, 41(46): 21310-21344.
[2]HAQUE M A, SULONG A B, LOH K S, et al. Acid doped polybenzimidazoles based membrane electrode assembly for high temperature proton exchange membrane fuel cell: a review[J]. International Journal of Hydrogen Energy, 2017, 42(14): 9156-9179.
[3]SONG C, ZHANG J. Fuel cell electro-catalyst and catalyst layers, fundamentals and applications[M]. London: Springer, 2008: 861-888.
[4]KRISHNAN P, PARK J S, KIM C S. Performance of a poly(2, 5-benzimidazole)membrane based high temperature PEM fuel cell in the presence of carbon monoxide[J]. Journal of Power Sources, 2006, 159(2): 817-823.
[5]GARSANY Y, GOULD B D, BATURINA O A, et al. Comparison of the sulfur poisoning of PBI and nafion PEMFC cathodes[J]. Electrochemical and Solid-State Letters, 2009, 12(9): B138.
[6]LI Q F, HE R H, GAO J A, et al. The CO poisoning effect in PEMFCs operational at temperatures up to 200 ℃[J]. Journal of the Electrochemical Society, 2003, 150(12): A1599.
[7]MCCONNELL V P. High-temperature PEM fuel cells: hotter, simpler, cheaper[J]. Fuel Cells Bulletin, 2009, 2009(12): 12-16.
[8]GALBIATI S, BARICCI A, CASALEGNO A, et al. On the activation of polybenzimidazole-based membrane electrode assemblies doped with phosphoric acid[J]. International Journal of Hydrogen Energy, 2012, 37(19): 14475-14481.
[9]BOAVENTURA M, MENDES A. Activation procedures characterization of MEA based on phosphoric acid doped PBI membranes[J]. International Journal of Hydrogen Energy, 2010, 35(20): 11649-11660.
[10]XU Z Q, QI Z G, KAUFMAN A. Activation of proton-exchange membrane fuel cells via CO oxidative stripping[J]. Journal of Power Sources, 2006, 156(2): 281-283.
[11]HE C Z, QI Z, HOLLETT M, et al. An electrochemical method to improve the performance of air cathodes and methanol anodes[J]. Electrochemical and Solid-State Letters, 2002, 5(8): A181.
[12]TINGEL?F T, IHONEN J K. A rapid break-in procedure for PBI fuel cells[J]. International Journal of Hydrogen Energy, 2009, 34(15): 6452-6456.
[13]LITSTER S, MCLEAN G. PEM fuel cell electrodes[M]//Fuel Cells Compendium. Amsterdam: Elsevier, 2005: 443-468.
[14]辛勤. 固体催化剂研究方法[M]. 北京: 科学出版社, 2005.
[15]KONG C S, KIM D Y, LEE H K, et al. Influence of pore-size distribution of diffusion layer on mass-transport problems of proton exchange membrane fuel cells[J]. Journal of Power Sources, 2002, 108(1/2): 185-191.
[16]KAMAT A, HERRMANN M, TERNES D, et al. Experimental investigations into phosphoric acid adsorption on platinum catalysts in a high temperature PEM fuel cell[J]. Fuel Cells, 2011, 11(4): 511-517.

备注/Memo

备注/Memo:
收稿日期:2021-07-24。
基金项目:江苏省六大人才高峰资助项目(XNYQC-036)。
作者简介:唐琪雯(1986—), 女, 四川眉山人, 博士, 工程师。E-mail: jelly.tang@palcan.com.cn
更新日期/Last Update: 1900-01-01