[1]董良飞,李 芬,刘会东,等.NO-3-N和NH+4-N联合生物炭对黑麦草修复镉污染的影响[J].常州大学学报(自然科学版),2023,35(02):36-45.[doi:10.3969/j.issn.2095-0411.2023.02.005 ]
 DONG Liangfei,LI Fen,LIU Huidong,et al.Effects of NO-3-N and NH+4-N combined biochar on Cd remediation by ryegrass[J].Journal of Changzhou University(Natural Science Edition),2023,35(02):36-45.[doi:10.3969/j.issn.2095-0411.2023.02.005 ]
点击复制

NO-3-N和NH+4-N联合生物炭对黑麦草修复镉污染的影响 ()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第35卷
期数:
2023年02期
页码:
36-45
栏目:
环境科学与工程:环境污染与生态修复专题
出版日期:
2023-03-28

文章信息/Info

Title:
Effects of NO-3-N and NH+4-N combined biochar on Cd remediation by ryegrass
文章编号:
2095-0411(2023)02-0036-10
作者:
董良飞12 李 芬1 刘会东2 仲慧赟2
(1.常州大学 环境科学与工程学院, 江苏 常州 213164; 2.常州大学 城市建设学院, 江苏 常州 213164)
Author(s):
DONG Liangfei12 LI Fen1 LIU Huidong2 ZHONG Huiyun2
(1.School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; 2.School of Urban Construction, Changzhou University, Changzhou 213164, China)
关键词:
生物炭 硝酸盐氮 铵态氮 镉污染 生物有效性
Keywords:
biochar nitrate nitrogen ammonium nitrogen Cd pollution bioavailability
分类号:
X 712
DOI:
10.3969/j.issn.2095-0411.2023.02.005
文献标志码:
A
摘要:
为降低土壤中镉(Cd)的危害,研究探讨了生物炭配施氮肥对黑麦草富集Cd的影响。采用盆栽实验研究土壤Cd污染水平(0.3,3,5 mg/kg)、氮肥形态(硝酸盐氮和铵态氮)、氮肥水平(0.1,0.2,0.5,1 g/kg)对Cd形态和黑麦草富集的影响。结果表明,单施生物炭可以固定土壤中游离的Cd,相比NH+4-N,配施NO-3-N黑麦草对Cd的吸收、迁移和富集能力更强。不同Cd污染浓度下,不同NO-3-N水平下Cd的最大去除率分别可以达到30.23%,36.06%和30.90%; 不同NH+4-N水平下,Cd的最大去除率可以达到24.49%,28.05%和24.79%。结合相关性分析表明,pH对Cd形态变化和Cd的富集起着关键性作用,且生物炭与NO-3-N的配施可以更有效、快捷地降低土壤中的Cd,更利于Cd污染土壤的安全应用。
Abstract:
The effects of nitrogen fertilizer and biochar on ryegrass Cd enrichment were examined in order to lessen the harm caused by cadmium(Cd)in soil. The effects of soil Cd pollution levels(0.3, 3, 5 mg/kg), nitrogen fertilizer forms(nitrate nitrogen and ammonium nitrogen)and nitrogen fertilizer levels(0.1, 0.2, 0.5, 1 g/kg)on Cd forms and ryegrass enrichment were studied in pot experiment. According to the findings, biochar alone might repair free Cd in soil, compared to NH+4-N, combined application of NO-3-N ryegrass has a stronger ability to absorb, migrate and enrich Cd. Under different Cd pollution concentrations, the maximum removal rates of Cd under different NO-3-N levels could reach 30.23%, 36.06% and 30.90%, respectively, while the maximum removal rates of Cd under different NH+4-N levels could reach 24.49%, 28.05% and 24.79%. Combined correlation analysis revealed that pH played a significant role in the change of Cd morphology and Cd enrichment. When biochar and NO-3-N were applied together, the content of Cd in the soil could be reduced more quickly and effectively, which was better suited for the safe application of Cd-polluted soil.

参考文献/References:

[1] 王从梅, 王波. 重金属Cd污染土壤的植物修复研究[J]. 现代园艺, 2021, 44(2): 14-15. [2] 翟娟. 电动-吸附修复镉污染土壤实验研究[D]. 常州: 常州大学, 2021. [3] 陈诚, 李中宝, 邓楠鑫, 等. 植物对镉污染土壤的修复作用[J]. 江苏农业科学, 2020, 48(1): 254-258. [4] 魏树和, 周启星, 王新. 超积累植物龙葵及其对镉的富集特征[J]. 环境科学, 2005, 26(3): 167-171. [5] ZHANG H, DANG Z, ZHENG L C, et al. Remediation of soil co-contaminated with pyrene and cadmium by growing maize(Zea mays L.)[J]. International Journal of Environmental Science & Technology, 2009, 6(2): 249-258. [6] LI N Y, LI Z A, FU Q L, et al. Agricultural technologies for enhancing the phytoremediation of cadmium-contaminated soil by Amaranthus hypochondriacus L[J]. Water, Air, & Soil Pollution, 2013, 224(9): 1673. [7] 彭曦. 镉污染农田土壤植物修复的强化措施及其效果研究[D]. 长沙: 湖南师范大学, 2020. [8] 董馨岚. 高羊茅、黑麦草对镉、锌复合污染土壤的修复潜力研究[D]. 金华: 浙江师范大学, 2020. [9] DE SOUZA J C J, NOGUEIROL R C, MONTEIRO F A. Nitrate and ammonium proportion plays a key role in copper phytoextraction, improving the antioxidant defense in Tanzania Guinea grass[J]. Ecotoxicology and Environmental Safety, 2019, 171: 823-832. [10] 夏文建, 张丽芳, 刘增兵, 等. 长期施用化肥和有机肥对稻田土壤重金属及其有效性的影响[J]. 环境科学, 2021, 42(5): 2469-2479. [11] SUN F F, CHEN J F, CHEN F Y, et al. Influence of biochar remediation on eisenia fetida in Pb-contaminated soils[J]. Chemosphere, 2022, 295: 133954. [12] TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. [13] TIAN X Q, WANG D, LI Z, et al. Influence of nitrogen forms, pH, and water levels on cadmium speciation and characteristics of cadmium uptake by rapeseed[J]. Environmental Science and Pollution Research International, 2022, 29(9): 13612-13623. [14] YANG W H, LI C J, WANG S S, et al. Influence of biochar and biochar-based fertilizer on yield, quality of tea and microbial community in an acid tea orchard soil[J]. Applied Soil Ecology, 2021, 166: 104005. [15] LU H L, LI K W, NKOH J N, et al. Effects of the increases in soil pH and pH buffering capacity induced by crop residue biochars on available Cd contents in acidic paddy soils[J]. Chemosphere, 2022, 301: 134674. [16] JIA Y H, LI J, ZENG X B, et al. The performance and mechanism of cadmium availability mitigation by biochars differ among soils with different pH: hints for the reasonable choice of passivators[J]. Journal of Environmental Management, 2022, 312: 114903. [17] LUO M K, LIN H, HE Y H, et al. The influence of corncob-based biochar on remediation of arsenic and cadmium in yellow soil and cinnamon soil[J]. The Science of the Total Environment, 2020, 717: 137014. [18] WANG J C, WANG H, CHEN J, et al. Xylem development, cadmium bioconcentration, and antioxidant defense in populus euramericana stems under combined conditions of nitrogen and cadmium[J]. Environmental and Experimental Botany, 2019, 164: 1-9. [19] HAN X Q, XIAO X Y, GUO Z H, et al. Release of cadmium in contaminated paddy soil amended with NPK fertilizer and lime under water management[J]. Ecotoxicology and Environmental Safety, 2018, 159: 38-45. [20] ZHANG L, HE Y L, LIN D S, et al. Co-application of biochar and nitrogen fertilizer promotes rice performance, decreases cadmium availability, and shapes rhizosphere bacterial community in paddy soil[J]. Environmental Pollution, 2022, 308: 119624. [21] LIU W X, ZHANG C J, HU P J, et al. Influence of nitrogen form on the phytoextraction of cadmium by a newly discovered hyperaccumulator carpobrotus rossii[J]. Environmental Science and Pollution Research International, 2016, 23(2): 1246-1253. [22] YOTSOVA E, DOBRIKOVA A, STEFANOV M, et al. Effects of cadmium on two wheat cultivars depending on different nitrogen supply[J]. Plant Physiology and Biochemistry, 2020, 155: 789-799. [23] LIU K H, LIANG J Y, ZHANG N N, et al. Global perspectives for biochar application in the remediation of heavy metal-contaminated soil: a bibliometric analysis over the past three decades[J]. International Journal of Phytoremediation, 2022: 1-15. [24] ZHANG S Y, DENG Y, FU S D, et al. Reduction mechanism of Cd accumulation in rice grain by Chinese milk vetch residue: insight into microbial community[J]. Ecotoxicology and Environmental Safety, 2020, 202: 110908. [25] HASSAN M J, WANG F, ALI S, et al. Toxic effect of cadmium on rice as affected by nitrogen fertilizer form[J]. Plant and Soil, 2005, 277(1): 359-365. [26] DAI H P, WEI S H, SKUZA L. Effects of different soil pH and nitrogen fertilizers on bidens pilosa L. Cd accumulation[J]. Environmental Science and Pollution Research, 2020, 27(9): 9403-9409. [27] WU Z C, ZHANG W J, XU S J, et al. Increasing ammonium nutrition as a strategy for inhibition of cadmium uptake and xylem transport in rice(oryza sativa L.)exposed to cadmium stress[J]. Environmental and Experimental Botany, 2018, 155: 734-741. [28] ZHAO R L, HUANG L H, PENG X, et al. Effect of different amounts of fruit peel-based activator combined with phosphate-solubilizing bacteria on enhancing phytoextraction of Cd from farmland soil by ryegrass[J]. Environmental Pollution, 2023, 316: 120602. [29] WANG S K, NIU X Y, DI D L, et al. Nitrogen and sulfur fertilizers promote the absorption of lead and cadmium with salix integra Thunb. by increasing the bioavailability of heavy metals and regulating rhizosphere microbes[J]. Frontiers in Microbiology, 2022, 13: 945847. [30] WANG Y L, XING W Q, LIANG X F, et al. Effects of exogenous additives on wheat Cd accumulation, soil Cd availability and physicochemical properties in Cd-contaminated agricultural soils: a meta-analysis[J]. The Science of the Total Environment, 2022, 808: 152090. [31] ATA-UL-KARIM S T, CANG L, WANG Y J, et al. Interactions between nitrogen application and soil properties and their impacts on the transfer of cadmium from soil to wheat(triticum aestivum L.)grain[J]. Geoderma, 2020, 357: 113923. [32] MALLHI Z I, RIZWAN M, MANSHA A, et al. Citric acid enhances plant growth, photosynthesis, and phytoextraction of lead by alleviating the oxidative stress in castor beans[J]. Plants(Basel, Switzerland), 2019, 8(11): 525. (责任编辑:李艳,周安迪)

备注/Memo

备注/Memo:
收稿日期: 2022-11-15。
作者简介: 董良飞(1972—), 男, 江苏沛县人, 博士, 教授。E-mail: dlf@cczu.edu.cn

更新日期/Last Update: 1900-01-01