参考文献/References:
[1] SWITZER J A, KOTHARI H M, POIZOT P, et al. Enantiospecific electrodeposition of a chiral catalyst[J]. Nature, 2003, 425(6957): 490-493.
[2] LIU B D, ZHANG X, DING Y P, et al. Enantioselective discrimination of L-/D-phenylalanine by bovine serum albumin and gold nanoparticles modified glassy carbon electrode[J]. Analytical Methods, 2015, 7(7): 3022-3027.
[3] CORRADINI R, BUCCELLA G, GALAVERNA G, et al. Synthesis and chiral recognition properties of L-Ala-Crown(3)-L-Ala capped β-cyclodextrin[J]. Tetrahedron Letters, 1999, 40(15): 3025-3028.
[4] LU H J, GUO Y L. Chiral recognition of borneol by association with zinc(II)and L-tryptophan in the gas phase[J]. Analytica Chimica Acta, 2003, 482(1): 1-7.
[5] KEUNCHKARIAN S, FRANCA C A, GAGLIARDI L G, et al. Enantioseparation of α-amino acids by means of Cinchona alkaloids as selectors in chiral ligand-exchange chromatography[J]. Journal of Chromatography A, 2013, 1298: 103-108.
[6] SOARES DA SILVA M, V?O E R, TEMTEM M, et al. Clean synthesis of molecular recognition polymeric materials with chiral sensing capability using supercritical fluid technology. Application as HPLC stationary phases[J]. Biosensors and Bioelectronics, 2010, 25(7): 1742-1747.
[7] FRADI I, SERVAIS A C, LAMALLE C, et al. Chemo- and enantio-selective method for the analysis of amino acids by capillary electrophoresis with in-capillary derivatization[J]. Journal of Chromatography A, 2012, 1267: 121-126.
[8] ALTRIA K D, HARKIN P, HINDSON M G. Quantitative determination of tryptophan enantiomers by capillary electrophoresis[J]. Journal of Chromatography B: Biomedical Sciences and Applications, 1996, 686(1): 103-110.
[9] ZHANG L, XU C, LIU C, et al. Visual chiral recognition of tryptophan enantiomers using unmodified gold nanoparticles as colorimetric probes[J]. Analytica Chimica Acta, 2014, 809: 123-127.
[10] DONG L Q, ZHANG Y S, DUAN X M, et al. Chiral PEDOT-based enantioselective electrode modification material for chiral electrochemical sensing: mechanism and model of chiral recognition[J]. Analytical Chemistry, 2017, 89(18): 9695-9702.
[11] WANG J. Carbon-nanotube based electrochemical biosensors:a review[J]. Electroanalysis, 2005, 17(1): 7-14.
[12] ASEFA T, DUNCAN C T, SHARMA K K. Recent advances in nanostructured chemosensors and biosensors[J]. The Analyst, 2009, 134(10): 1980-1990.
[13] Y??EZ-SEDE?O P, PINGARR?N J M, RIU J, et al. Electrochemical sensing based on carbon nanotubes[J]. TrAC Trends in Analytical Chemistry, 2010, 29(9): 939-953.
[14] ZHOU M, ZHAI Y M, DONG S J. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide[J]. Analytical Chemistry, 2009, 81(14): 5603-5613.
[15] NIU X H, YANG X, MO Z L, et al. Voltammetric enantiomeric differentiation of tryptophan by using multiwalled carbon nanotubes functionalized with ferrocene and β-cyclodextrin[J]. Electrochimica Acta, 2019, 297: 650-659.
[16] 江力, 黄兴宇, 蒋必彪, 等. 固相合成法制备单官能度纳米粒子[J]. 常州大学学报(自然科学版), 2021, 33(1): 1-8.
[17] 刘长海, 张丽丽, 陈智栋. 钌/碳化钼复合催化剂的制备及电催化析氢性能[J]. 常州大学学报(自然科学版), 2022, 34(5): 1-7.
[18] LUO X, MORRIN A, KILLARD A J, et al. Application of nanoparticles in electrochemical sensors and biosensors[J].Electroanalysis, 2006, 18(4): 319-326.
[19] CHENG J, CHANG P R, ZHENG P W, et al. Characterization of magnetic carbon nanotube-cyclodextrin composite and its adsorption of dye[J]. Industrial & Engineering Chemistry Research, 2014, 53(4): 1415-1421.
[20] ZHU G B, GAI P B, WU L, et al. β-cyclodextrin-platinum nanoparticles/graphene nanohybrids: enhanced sensitivity for electrochemical detection of naphthol isomers[J]. Chemistry, an Asian Journal, 2012, 7(4): 732-737.
[21] ZHU G B, YI Y H, CHEN J H. Recent advances for cyclodextrin-based materials in electrochemical sensing[J]. TrAC Trends in Analytical Chemistry, 2016, 80: 232-241.
(责任编辑:谭晓荷)