[1]谢立成,陆秋娜,姜艳.基于β -环糊精的电化学手性传感器的制备及应用[J].常州大学学报(自然科学版),2023,35(03):23-29.[doi:10.3969/j.issn.2095-0411.2023.03.004 ]
 XIE Licheng,LU Qiuna,JIANG Yan.Synthesis and application of electrochemical chiralsensor based on β -cyclodextrin[J].Journal of Changzhou University(Natural Science Edition),2023,35(03):23-29.[doi:10.3969/j.issn.2095-0411.2023.03.004 ]
点击复制

基于β -环糊精的电化学手性传感器的制备及应用 ()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第35卷
期数:
2023年03期
页码:
23-29
栏目:
化学化工
出版日期:
2023-05-28

文章信息/Info

Title:
Synthesis and application of electrochemical chiralsensor based on β -cyclodextrin
文章编号:
2095-0411(2023)03-0023-07
作者:
谢立成1陆秋娜2姜艳2
(1.常州大学 怀德学院, 江苏 靖江 214500; 2.常州大学 石油化工学院, 江苏 常州 213164)
Author(s):
XIE Licheng1 LU Qiuna2 JIANG Yan2
(1.Huaide College, Changzhou University, Jingjiang 214500, China; 2.School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China)
关键词:
纳米粒子 手性传感器 电化学 手性识别
Keywords:
nanoparticles chiralsensor electrochemistry chiral recognition
分类号:
O 613.52
DOI:
10.3969/j.issn.2095-0411.2023.03.004
文献标志码:
A
摘要:
β -环糊精(β -CD)为手性选择剂、多壁碳纳米管(MWCNTs)为导电吸附剂、铂纳米粒子(PtNPs)为电子转移导体,制备了电化学传感器β -CD-PtNPs-RCNTs,并通过透射电子显微镜(TEM)、循环伏安法(CV)和交流阻抗对其进行了表征。由于β -环糊精特有的空间结构和多壁碳纳米管的优良导电性,手性传感平台在循环伏安法(CV)实验中对2-氨基-1-(4-硝基苯基)-1,3-丙二醇对映体表现出良好的识别效果。同时,该传感装置通过电化学测试表现出良好的稳定性和重复性。本研究为构建基于吸附原理的手性传感平台提供了另一种方法。
Abstract:
An electrochemical chiralsensor(β -CD-PtNPs-RCNTs)was constructed via chiral selector β -cyclodextrin(β -CD), adsorbent multi-walled carbon nanotubes(MWCNTs)and platinum nanoparticles(PtNPs). The material has been characterized by transmission electron microscopy(TEM),cyclic voltammetry(CV)and AC impedance method. Moreover, the superior conductivity of MWCNTs and the decent spatial structure of β -cyclodextrin endowed this sensing platform with excellent recognition effect for 2-amino-1-(4-nitrophenyl)-1,3-propanediol enantiomers in the differential cyclic voltammetry(CV)test. The sensing device displayed considerable stability and superior repeatability in the electrochemical tests. This may manifest an alternative method of chiral sensing plat-form based on adsorption principle.

参考文献/References:

[1] SWITZER J A, KOTHARI H M, POIZOT P, et al. Enantiospecific electrodeposition of a chiral catalyst[J]. Nature, 2003, 425(6957): 490-493.
[2] LIU B D, ZHANG X, DING Y P, et al. Enantioselective discrimination of L-/D-phenylalanine by bovine serum albumin and gold nanoparticles modified glassy carbon electrode[J]. Analytical Methods, 2015, 7(7): 3022-3027.
[3] CORRADINI R, BUCCELLA G, GALAVERNA G, et al. Synthesis and chiral recognition properties of L-Ala-Crown(3)-L-Ala capped β-cyclodextrin[J]. Tetrahedron Letters, 1999, 40(15): 3025-3028.
[4] LU H J, GUO Y L. Chiral recognition of borneol by association with zinc(II)and L-tryptophan in the gas phase[J]. Analytica Chimica Acta, 2003, 482(1): 1-7.
[5] KEUNCHKARIAN S, FRANCA C A, GAGLIARDI L G, et al. Enantioseparation of α-amino acids by means of Cinchona alkaloids as selectors in chiral ligand-exchange chromatography[J]. Journal of Chromatography A, 2013, 1298: 103-108.
[6] SOARES DA SILVA M, V?O E R, TEMTEM M, et al. Clean synthesis of molecular recognition polymeric materials with chiral sensing capability using supercritical fluid technology. Application as HPLC stationary phases[J]. Biosensors and Bioelectronics, 2010, 25(7): 1742-1747.
[7] FRADI I, SERVAIS A C, LAMALLE C, et al. Chemo- and enantio-selective method for the analysis of amino acids by capillary electrophoresis with in-capillary derivatization[J]. Journal of Chromatography A, 2012, 1267: 121-126.
[8] ALTRIA K D, HARKIN P, HINDSON M G. Quantitative determination of tryptophan enantiomers by capillary electrophoresis[J]. Journal of Chromatography B: Biomedical Sciences and Applications, 1996, 686(1): 103-110.
[9] ZHANG L, XU C, LIU C, et al. Visual chiral recognition of tryptophan enantiomers using unmodified gold nanoparticles as colorimetric probes[J]. Analytica Chimica Acta, 2014, 809: 123-127.
[10] DONG L Q, ZHANG Y S, DUAN X M, et al. Chiral PEDOT-based enantioselective electrode modification material for chiral electrochemical sensing: mechanism and model of chiral recognition[J]. Analytical Chemistry, 2017, 89(18): 9695-9702.
[11] WANG J. Carbon-nanotube based electrochemical biosensors:a review[J]. Electroanalysis, 2005, 17(1): 7-14.
[12] ASEFA T, DUNCAN C T, SHARMA K K. Recent advances in nanostructured chemosensors and biosensors[J]. The Analyst, 2009, 134(10): 1980-1990.
[13] Y??EZ-SEDE?O P, PINGARR?N J M, RIU J, et al. Electrochemical sensing based on carbon nanotubes[J]. TrAC Trends in Analytical Chemistry, 2010, 29(9): 939-953.
[14] ZHOU M, ZHAI Y M, DONG S J. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide[J]. Analytical Chemistry, 2009, 81(14): 5603-5613.
[15] NIU X H, YANG X, MO Z L, et al. Voltammetric enantiomeric differentiation of tryptophan by using multiwalled carbon nanotubes functionalized with ferrocene and β-cyclodextrin[J]. Electrochimica Acta, 2019, 297: 650-659.
[16] 江力, 黄兴宇, 蒋必彪, 等. 固相合成法制备单官能度纳米粒子[J]. 常州大学学报(自然科学版), 2021, 33(1): 1-8.
[17] 刘长海, 张丽丽, 陈智栋. 钌/碳化钼复合催化剂的制备及电催化析氢性能[J]. 常州大学学报(自然科学版), 2022, 34(5): 1-7.
[18] LUO X, MORRIN A, KILLARD A J, et al. Application of nanoparticles in electrochemical sensors and biosensors[J].Electroanalysis, 2006, 18(4): 319-326.
[19] CHENG J, CHANG P R, ZHENG P W, et al. Characterization of magnetic carbon nanotube-cyclodextrin composite and its adsorption of dye[J]. Industrial & Engineering Chemistry Research, 2014, 53(4): 1415-1421.
[20] ZHU G B, GAI P B, WU L, et al. β-cyclodextrin-platinum nanoparticles/graphene nanohybrids: enhanced sensitivity for electrochemical detection of naphthol isomers[J]. Chemistry, an Asian Journal, 2012, 7(4): 732-737.
[21] ZHU G B, YI Y H, CHEN J H. Recent advances for cyclodextrin-based materials in electrochemical sensing[J]. TrAC Trends in Analytical Chemistry, 2016, 80: 232-241.
(责任编辑:谭晓荷)

备注/Memo

备注/Memo:
收稿日期: 2022-12-10。
作者简介: 谢立成(1970—), 男, 江苏溧阳人, 硕士, 高级工程师。E-mail: lichengxie@hotmail.com

更新日期/Last Update: 1900-01-01