参考文献/References:
[1] ZHOU Y, WANG Z, LIU C. Perspective on CO oxidation over Pd-based catalysts[J]. Catalysis Science & Technology, 2014, 5(1): 69-81.
[2] 孟甜甜, 赵世超, 陈朝秋, 等. 原子层沉积制备Pt/CeO2催化剂及其低温CO氧化性能的研究[J]. 现代化工, 2020, 40(10): 184-187.
[3] 吴静谧, 曾亮, 程党国, 等. CeO2纳米管负载Pd纳米颗粒催化CO低温氧化[J]. 催化学报, 2016, 37(1): 83-90.
[4] 许杰, 文琳智, 郑欢, 等. 介孔氧化铈负载Pd催化苯甲醇选择氧化[J]. 常州大学学报(自然科学版), 2020, 32(6): 22-30.
[5] CHEN Y, CHEN J, QU W, et al. Well-defined palladium-ceria interfacial electronic effects trigger CO oxidation[J]. Chemical Communications, 2018, 54(72): 10140-10143.
[6] SUN H, YU X, MA X, et al. MnOx-CeO2 catalyst derived from metal-organic frameworks for toluene oxidation[J]. Catalysis Today, 2020, 355: 580-586.
[7] 赵吉晓, 蔡文静, 焦志锋, 等. Pd-Cu/SiC催化苯乙炔选择性加氢性能[J]. 常州大学学报(自然科学版), 2022, 34(5): 23-29.
[8] DAI Y, LU P, CAO Z, et al. The physical chemistry and materials science behind sinter-resistant catalysts[J]. Chemical Society Reviews, 2018, 47(12): 4314-4331.
[9] ABBASI F, KARIMI-SABET J, GHOTBI C. Reactivity and characteristics of Pd/MOF and Pd/calcinated-MOF catalysts for CO oxidation reaction: effect of oxygen and hydrogen[J]. International Journal of Hydrogen Energy, 2021, 46(24): 12822-12834.
[10] SONG L, XU T, GAO D, et al. Metal-organic framework-derived carbon-mediated interfacial reaction for the synthesis of CeO2-MnO2 catalysts[J]. Chemistry-A European Journal, 2019, 25(26): 6621-6627.
[11] YE J, CHENG D, CHEN F, et al. Metal-organic framework-derived CeO2 nanosheets confining ultrasmall Pd nanoclusters catalysts with high catalytic activity[J]. International Journal of Hydrogen Energy, 2021, 46(80): 39892-39902.
[12] MENG L, LIN J J, PU Z Y, et al. Identification of active sites for CO and CH4 oxidation over PdO/Ce1-xPdxO2-δ catalysts[J]. Applied Catalysis B: Environmental, 2012, 119/120: 117-122.
[13] LIU L, YAO Z, DENG Y, et al. Morphology and crystal-plane effects of nanoscale ceria on the activity of CuO/CeO2 for NO reduction by CO[J]. ChemCatChem, 2011, 3(6): 978-989.
[14] CHEN L Y, CHEN H R, LI Y W. One-pot synthesis of Pd@MOF composites without the addition of stabilizing agents[J]. Chemical Communications, 2014, 50(94): 14752-14755.
[15] SLAVINSKAYA E M, GULYAEV R V, ZADESENETS A V, et al. Low-temperature CO oxidation by Pd/CeO2 catalysts synthesized using the coprecipitation method[J]. Applied Catalysis B: Environmental, 2015, 166/167: 91-103.
[16] YE J, CHENG D, CHEN F, et al. Controlled synthesis of sintering-resistant Pd@CeO2 core-shell nanotube catalysts for CO oxidation[J]. Industrial & Engineering Chemistry Research, 2019, 58(48): 21972-21982.
[17] HAN N K, CHOI Y C, PARK D U, et al. Core-shell type composites based on polyimide-derived carbon nanofibers and manganese dioxide for self-standing and binder-free supercapacitor electrode applications[J]. Composites Science and Technology, 2020, 196: 108212.
[18] 袁堃, 张亚文. 纳米氧化铈的缺陷化学及其在多相催化中作用的研究进展[J]. 中国稀土学报, 2020, 38(3): 326-344.
[19] KURNATOWSKA M, KEPINSKI L, MISTA W. Structure evolution of nanocrystalline Ce1-xPdxO2-y mixed oxide in oxidizing and reducing atmosphere: reduction-induced activity in low-temperature CO oxidation[J]. Applied Catalysis B: Environmental, 2012, 117/118: 135-147.
[20] GUO M N, GUO C X, JIN L Y, et al. Nano-sized CeO2 with extra-high surface area and its activity for CO oxidation[J]. Materials Letters, 2010, 64(14): 1638-1640.
[21] ZHANG X, BI F, ZHU Z, et al. The promoting effect of H2O on rod-like MnCeOx derived from MOFs for toluene oxidation: a combined experimental and the oretical investigation[J]. Applied Catalysis B: Environmental, 2021, 297: 120393.
[22] ZHANG S, CHANG C, HUANG Z, et al. High catalytic activity and chemoselectivity of sub-nanometric Pd clusters on porous nanorods of CeO2 for hydrogenation of nitroarenes[J]. Journal of the American Chemical Society, 2016, 138(8): 2629-2637.
[23] WANG B J, CHU G W, LI Y B, et al. Intensified micro-mixing effects on evolution of oxygen vacancies of CeO2-based catalysts for improved CO oxidation[J]. Chemical Engineering Science, 2021, 244: 116814.
[24] TANG T, YE L M, CHEN Y R, et al. Diving into the interface-mediated Mars-van Krevelen characteristic of CuOx-supported CeO2 catalysts[J]. Applied Catalysis B: Environmental, 2024, 342: 123368.
[25] SONG J L, BAI S X, SUN Q. Strong metal-support interaction of Pd/CeO2 enhances hydrogen production from formic acid decomposition[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 658: 130645.
[26] MURAVEV V, SPEZZATI G, SU Y Q, et al. Interface dynamics of Pd-CeO2 single-atom catalysts during CO oxidation[J]. Nature Catalysis, 2021, 4(6): 469-478.
[27] WAIKAR J, MORE P. Oxygen deficient Ce doped CO supported on alumina catalyst for low-temperature CO oxidation in presence of H2O and SO2[J]. Fuel, 2023, 331: 125880.