[1]叶菁睿,何光裕,陈海群.MOF衍生制备Pd-MnCeOx催化剂及其CO催化氧化性能[J].常州大学学报(自然科学版),2023,35(06):19-25.[doi:10.3969/j.issn.2095-0411.2023.06.003]
 YE Jingrui,HE Guangyu,CHEN Haiqun.MOF-derived Pd-MnCeOx catalysts and its CO catalytic oxidation properties[J].Journal of Changzhou University(Natural Science Edition),2023,35(06):19-25.[doi:10.3969/j.issn.2095-0411.2023.06.003]
点击复制

MOF衍生制备Pd-MnCeOx催化剂及其CO催化氧化性能()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第35卷
期数:
2023年06期
页码:
19-25
栏目:
化学化工:多相催化专题
出版日期:
2023-11-28

文章信息/Info

Title:
MOF-derived Pd-MnCeOx catalysts and its CO catalytic oxidation properties
文章编号:
2095-0411(2023)06-0019-07
作者:
叶菁睿 何光裕 陈海群
(常州大学 石油化工学院, 江苏 常州 213164)
Author(s):
YE Jingrui HE Guangyu CHEN Haiqun
(School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China)
关键词:
一氧化碳氧化 Pd基催化剂 金属掺杂 二氧化铈
Keywords:
CO oxidation Pd-based catalysts metal doping CeO2
分类号:
TQ 138.2
DOI:
10.3969/j.issn.2095-0411.2023.06.003
文献标志码:
A
摘要:
利用铈基金属有机框架限域Pd颗粒,并通过界面反应掺杂Mn离子,以此为前驱体经过热解反应制备MnCeOx混合氧化物负载的Pd催化剂。表征结果表明,这一方法制备的Pd-MnCeOx催化剂具有纳米棒状形貌,且Mn在CeO2晶格中均匀掺杂,Pd在载体上高度分散。Mn的掺杂有效提升了载体的氧空穴浓度,改善了载体的低温氧化还原性能,增强了CO氧化反应中的晶格氧流动性。此外,在Mn的掺杂量达到3.26%时,Pd-MnCeOx-10中Pd与混合氧化物具有最强的金属-载体相互作用,从而表现出了最佳的CO催化氧化活性,在100 ℃时可以将CO完全转化。
Abstract:
Ce-based metal-organic frameworks were applied to confine Pd particles and Mn ions were incorporated inside by interfacial reaction, which was pyrolyzed to prepare MnCeOx mixed oxide supporting Pd as precursor. The characterization results showed that the as-prepared Pd-MnCeOx catalysts possessed nanorod morphology, on which Pd were highly dispersed and Mn were homogeneously doped into CeO2 lattice. Mn doping effectively improved the concentration of oxygen vacancy and the low-temperature redox of support, enhancing the lattice oxygen mobility in CO oxidation. In addition,when Mn doping amount reached 3.26%, the strongest metal-support interaction between Pd and the mixed oxide in Pd-MnCeOx-10 was observed, leading to the improved catalytic activity as complete CO conversion at 100 ℃.

参考文献/References:

[1] ZHOU Y, WANG Z, LIU C. Perspective on CO oxidation over Pd-based catalysts[J]. Catalysis Science & Technology, 2014, 5(1): 69-81.
[2] 孟甜甜, 赵世超, 陈朝秋, 等. 原子层沉积制备Pt/CeO2催化剂及其低温CO氧化性能的研究[J]. 现代化工, 2020, 40(10): 184-187.
[3] 吴静谧, 曾亮, 程党国, 等. CeO2纳米管负载Pd纳米颗粒催化CO低温氧化[J]. 催化学报, 2016, 37(1): 83-90.
[4] 许杰, 文琳智, 郑欢, 等. 介孔氧化铈负载Pd催化苯甲醇选择氧化[J]. 常州大学学报(自然科学版), 2020, 32(6): 22-30.
[5] CHEN Y, CHEN J, QU W, et al. Well-defined palladium-ceria interfacial electronic effects trigger CO oxidation[J]. Chemical Communications, 2018, 54(72): 10140-10143.
[6] SUN H, YU X, MA X, et al. MnOx-CeO2 catalyst derived from metal-organic frameworks for toluene oxidation[J]. Catalysis Today, 2020, 355: 580-586.
[7] 赵吉晓, 蔡文静, 焦志锋, 等. Pd-Cu/SiC催化苯乙炔选择性加氢性能[J]. 常州大学学报(自然科学版), 2022, 34(5): 23-29.
[8] DAI Y, LU P, CAO Z, et al. The physical chemistry and materials science behind sinter-resistant catalysts[J]. Chemical Society Reviews, 2018, 47(12): 4314-4331.
[9] ABBASI F, KARIMI-SABET J, GHOTBI C. Reactivity and characteristics of Pd/MOF and Pd/calcinated-MOF catalysts for CO oxidation reaction: effect of oxygen and hydrogen[J]. International Journal of Hydrogen Energy, 2021, 46(24): 12822-12834.
[10] SONG L, XU T, GAO D, et al. Metal-organic framework-derived carbon-mediated interfacial reaction for the synthesis of CeO2-MnO2 catalysts[J]. Chemistry-A European Journal, 2019, 25(26): 6621-6627.
[11] YE J, CHENG D, CHEN F, et al. Metal-organic framework-derived CeO2 nanosheets confining ultrasmall Pd nanoclusters catalysts with high catalytic activity[J]. International Journal of Hydrogen Energy, 2021, 46(80): 39892-39902.
[12] MENG L, LIN J J, PU Z Y, et al. Identification of active sites for CO and CH4 oxidation over PdO/Ce1-xPdxO2-δ catalysts[J]. Applied Catalysis B: Environmental, 2012, 119/120: 117-122.
[13] LIU L, YAO Z, DENG Y, et al. Morphology and crystal-plane effects of nanoscale ceria on the activity of CuO/CeO2 for NO reduction by CO[J]. ChemCatChem, 2011, 3(6): 978-989.
[14] CHEN L Y, CHEN H R, LI Y W. One-pot synthesis of Pd@MOF composites without the addition of stabilizing agents[J]. Chemical Communications, 2014, 50(94): 14752-14755.
[15] SLAVINSKAYA E M, GULYAEV R V, ZADESENETS A V, et al. Low-temperature CO oxidation by Pd/CeO2 catalysts synthesized using the coprecipitation method[J]. Applied Catalysis B: Environmental, 2015, 166/167: 91-103.
[16] YE J, CHENG D, CHEN F, et al. Controlled synthesis of sintering-resistant Pd@CeO2 core-shell nanotube catalysts for CO oxidation[J]. Industrial & Engineering Chemistry Research, 2019, 58(48): 21972-21982.
[17] HAN N K, CHOI Y C, PARK D U, et al. Core-shell type composites based on polyimide-derived carbon nanofibers and manganese dioxide for self-standing and binder-free supercapacitor electrode applications[J]. Composites Science and Technology, 2020, 196: 108212.
[18] 袁堃, 张亚文. 纳米氧化铈的缺陷化学及其在多相催化中作用的研究进展[J]. 中国稀土学报, 2020, 38(3): 326-344.
[19] KURNATOWSKA M, KEPINSKI L, MISTA W. Structure evolution of nanocrystalline Ce1-xPdxO2-y mixed oxide in oxidizing and reducing atmosphere: reduction-induced activity in low-temperature CO oxidation[J]. Applied Catalysis B: Environmental, 2012, 117/118: 135-147.
[20] GUO M N, GUO C X, JIN L Y, et al. Nano-sized CeO2 with extra-high surface area and its activity for CO oxidation[J]. Materials Letters, 2010, 64(14): 1638-1640.
[21] ZHANG X, BI F, ZHU Z, et al. The promoting effect of H2O on rod-like MnCeOx derived from MOFs for toluene oxidation: a combined experimental and the oretical investigation[J]. Applied Catalysis B: Environmental, 2021, 297: 120393.
[22] ZHANG S, CHANG C, HUANG Z, et al. High catalytic activity and chemoselectivity of sub-nanometric Pd clusters on porous nanorods of CeO2 for hydrogenation of nitroarenes[J]. Journal of the American Chemical Society, 2016, 138(8): 2629-2637.
[23] WANG B J, CHU G W, LI Y B, et al. Intensified micro-mixing effects on evolution of oxygen vacancies of CeO2-based catalysts for improved CO oxidation[J]. Chemical Engineering Science, 2021, 244: 116814.
[24] TANG T, YE L M, CHEN Y R, et al. Diving into the interface-mediated Mars-van Krevelen characteristic of CuOx-supported CeO2 catalysts[J]. Applied Catalysis B: Environmental, 2024, 342: 123368.
[25] SONG J L, BAI S X, SUN Q. Strong metal-support interaction of Pd/CeO2 enhances hydrogen production from formic acid decomposition[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 658: 130645.
[26] MURAVEV V, SPEZZATI G, SU Y Q, et al. Interface dynamics of Pd-CeO2 single-atom catalysts during CO oxidation[J]. Nature Catalysis, 2021, 4(6): 469-478.
[27] WAIKAR J, MORE P. Oxygen deficient Ce doped CO supported on alumina catalyst for low-temperature CO oxidation in presence of H2O and SO2[J]. Fuel, 2023, 331: 125880.

备注/Memo

备注/Memo:
收稿日期: 2023-05-27。
基金项目: 江苏省高等学校基础科学(自然科学)研究项目资助(21KJD530001); 江苏省绿色催化材料与技术实验室开放课题基金资助项目(BM2012110)。
作者简介: 叶菁睿(1992—), 女, 安徽宿州人, 博士, 讲师。通信联系人: 陈海群(1970—), E-mail: chenhq@cczu.edu.cn
更新日期/Last Update: 1900-01-01