参考文献/References:
[1] CHEN G H, HE Y L, QIU Z S, et al. Research and application of fine identification method of lost circulation characteristics in drilling[J]. Petroleum Drilling Techniques, 2024, 52(1): 1-6.
[2] SUN J S, BAI Y R, CHENG R C, et al. Research progress and prospect of plugging technologies for fractured formation with severe lost circulation[J]. Petroleum Exploration and Development, 2021, 48(3): 732-743.
[3] 李大奇, 康毅力, 刘修善, 等. 裂缝性地层钻井液漏失动力学模型研究进展[J]. 石油钻探技术, 2013, 41(4): 42-47.
[4] APALEKE A S, AL-MAJED A, HOSSAIN M E. Drilling fluid: state of the art and future trend[C]// SPE North Africa Technical Conference and Exhibition. Cairo: SPE, 2012: SPE-149555-MS.
[5] 陈卓, 耿立军, 岳明, 等. 渤中13-2区块复杂薄弱层高强度承压堵漏技术研究及应用[J].常州大学学报(自然科学版), 2023, 35(4): 77-86.
[6] KALHOR MOHAMMADI M, RIAHI S, BOEK E S. An insight review on formation damage induced by drilling fluids[J]. Reviews in Chemical Engineering, 2023, 39(3): 387-415.
[7] KIRAN R, TEODORIU C, DADMOHAMMADI Y, et al. Identification and evaluation of well integrity and causes of failure of well integrity barriers(a review)[J]. Journal of Natural Gas Science and Engineering, 2017, 45: 511-526.
[8] MARDANIRAD S, WOOD D A, ZAKERI H. The application of deep learning algorithms to classify subsurface drilling lost circulation severity in large oil field datasets[J]. SN Applied Sciences, 2021, 3(9): 785.
[9] SULE I, IMTIAZ S, KHAN F, et al. Risk analysis of well blowout scenarios during managed pressure drilling operation[J]. Journal of Petroleum Science and Engineering, 2019, 182: 106296.
[10] WOOD D A, MARDANIRAD S, ZAKERI H. Effective prediction of lost circulation from multiple drilling variables: a class imbalance problem for machine and deep learning algorithms[J]. Journal of Petroleum Exploration and Production Technology, 2022, 12(1): 83-98.
[11] KUANG L C, LIU H, REN Y L, et al. Application and development trend of artificial intelligence in petroleum exploration and development[J]. Petroleum Exploration and Development, 2021, 48(1): 1-14.
[12] KAMGUE LENWOUE A R, LI Z H, TANG C F, et al. Recent advances and challenges of the application of artificial intelligence to predict wellbore instabilities during drilling operations[J]. SPE Drilling & Completion, 2023, 38(4): 645-662.
[13] ZHU X Y, HAO J, GUO Y H, et al. AUC maximization in imbalanced lifelong learning[C]//Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence. Pittsburgh: ACM, 2023: 2574-2585.
[14] YUAN Z N, YAN Y, SONKA M, et al. Large-scale robust deep AUC maximization: a new surrogate loss and empirical studies on medical image classification[C]//2021 IEEE/CVF International Conference on Computer Vision(ICCV). Montreal: IEEE, 2021: 3020-3029.
[15] YUAN Z N, GUO Z S, CHAWLA N, et al. Compositional training for end-to-end deep AUC maximization[C]//International Conference on Learning Representations. [S.l.: s.n.], 2022.
[16] YANG T B, YING Y M. AUC maximization in the era of big data and AI: a survey[J]. ACM Computing Surveys, 2022, 55(8): 172.
[17] WANG X Y, LYU Y L, JING L P. Deep generative model for robust imbalance classification[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Seattle: IEEE, 2020: 14112-14121.
[18] JAN B, FARMAN H, KHAN M, et al. Deep learning in big data analytics: a comparative study[J]. Computers and Electrical Engineering, 2019, 75: 275-287.
[19] CARRINGTON A M, MANUEL D G, FIEGUTH P W, et al. Deep ROC analysis and AUC as balanced average accuracy, for improved classifier selection, audit and explanation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 329-341.
[20] JOLOUDARI J H, MAREFAT A, ALI NEMATOLLAHI M, et al. Effective class-imbalance learning based on SMOTE and convolutional neural networks[J]. Applied Sciences, 2023, 13(6): 4006.
[21] YANG Z Y, XU Q Q, BAO S L, et al. AUC-oriented domain adaptation: from theory to algorithm[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(12): 14161-14174.
[22] HANLEY J A, MCNEIL B J. The meaning and use of the area under a receiver operating characteristic(ROC)curve[J]. Radiology, 1982, 143(1): 29-36.
[23] YING Y, WEN L, LYU S. Stochastic online AUC maximization[C]//Neural Information Processing Systems. 2016, 29: 451-459.
[24] XU S K, DING Y R, WANG Y H, et al. FAUC-S: deep AUC maximization by focusing on hard samples[J]. Neurocomputing, 2024, 571: 127172.
[25] SAITO K, SAENKO K. OVANet: one-vs-all network for universal domain adaptation[C]//2021 IEEE/CVF International Conference on Computer Vision(ICCV). Montreal: IEEE, 2021: 8980-8989.
[26] MWANGI B, TIAN T S, SOARES J C. A review of feature reduction techniques in neuroimaging[J]. Neuroinformatics, 2014, 12(2): 229-244.
[27] RAMSUNDAR B, ZADEH R B. TensorFlow for deep learning: from linear regression to reinforcement learning[M]. Sebastopol: O'Reilly Media, Inc., 2018.
[28] GAO Y, GLOWACKA D. Deep gate recurrent neural network[EB/OL].(2016-04-11)[2024-03-04]. http://arxiv.org/abs/1604.02910.pdf.
[29] YU K P, TAN L, MUMTAZ S, et al. Securing critical infrastructures: deep-learning-based threat detection in IIoT[J]. IEEE Communications Magazine, 2021, 59(10): 76-82.
[30] LUO J R, QIAO H, ZHANG B. A minimax probability machine for nondecomposable performance measures[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(5): 2353-2365.