[1]刘付喜,钱苏翔,曹 坚.基于遗传算法的BP神经网络在声音智能监控中应用[J].常州大学学报(自然科学版),2012,(03):70-74.
 LIU Fu-xi,QIAN Su-xiang,CAO Jian.Application of Optimized BP Neural Network Based on Genetic Algorithm in Intelligent Sound Monitoring[J].Journal of Changzhou University(Natural Science Edition),2012,(03):70-74.
点击复制

基于遗传算法的BP神经网络在声音智能监控中应用()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2012年03期
页码:
70-74
栏目:
出版日期:
2012-06-01

文章信息/Info

Title:
Application of Optimized BP Neural Network Based on Genetic Algorithm in Intelligent Sound Monitoring
作者:
刘付喜12钱苏翔12曹 坚2
1.常州大学 机械工程学院,江苏 常州 213016; 2.嘉兴学院 机电工程学院,浙江 嘉兴 314033
Author(s):
LIU Fu-xi12QIAN Su-xiang12CAO Jian2
1.School of Mechanical Engineering,Changzhou University,Changzhou 213016,China; 2.School of Electromechanical Engineering,Jiaxing University,Jiaxing 314001, China
关键词:
智能监控 遗传算法 BP神经网络 信号处理
Keywords:
intelligent monitoring genetic algorithm BP neural network signal processing
分类号:
TP 277
文献标志码:
A
摘要:
针对标准的BP神经网络对于声音信号在线监控模型的预测误差比较大,提出了一种用遗传算法优化BP神经网络的算法,建立了声音监控的预测模型。遗传算法优化BP神经网络主要是用遗传算法来优化BP神经网络的初始权值和阀值,然后通过训练BP神经网络以得到预测模型的最优解,优化后的神经网络具有预测误差比较小、反应速度快等特点。实验结果证明,利用遗传算法优化BP神经网络在声音的智能监控中取得了比较好的效果,达到了系统设计的目的。
Abstract:
According to the standard BP neural network for relatively large prediction error in sound signal online monitoring model, a kind of algorithm using genetic algorithm to optimize BP neural network is put forward, anda sound monitoring prediction model is established. BP neural network optimizedby genetic algorithm mainly uses the genetic algorithm to optimize BP neural network's initial weights and threshold value, the optimal solution of predictionmodel is obtained through training BP neural network and the optimized neural network has a relatively small prediction error and a relatively fast speed,etc. The experimental result shows that a better effect is obtained by adopting BP neural network optimized by the genetic algorithm in intelligent sound monitoring,and the aim of the system design is achieved.

参考文献/References:

[1]颜菲菲, 高胜法, 刘晓兰.远程视频监控系统的安全可靠性研究[J]. 计算机工程与设计, 2005, 26(9):2494-2496.
[2]刘士兴, 邓立琼, 何方,等. 智能楼宇监测系统研究[J]. 合肥工业大学学报:自然科学版, 2010, 33(2):215-218.
[3]杨 平, 马步远, 张有光. 博物馆声敏监控报警系统的设计与实现[J]. 计算机工程与设计, 2007, 28(2):462-464.
[4]Hopfield J, Tank D. ‘Neural' computation of decisions in optimization problems Biological Cybernetics[J].Journal of Control Theory and Applications, 1985, 52:141-152.
[5]YAN Xuefen. Hybrid artifical neural network based on BP-PLSR and its application in development of soft senors[J]. Chemometrics and Intelligent Laboratory Systems, 2010, 130(2):152-159.
[6]阎平凡, 张长水. 人工神经网络与模拟进化计算[M]. 北京: 清华大学出版社, 2005:549-569.
[7]李松, 刘力军, 解永乐. 遗传算法优化BP神经网络的短时交通流混沌预测[J]. 控制与决策, 2011, 26(10):1581-1585.
[8]于金涛, 赵树延, 王祁. 基于经验模态分析和小波变换声发射信号去噪[J]. 哈尔滨工业大学学报, 2011, 43(10): 88-92.
[9]栾少文, 龚卫国. 公共场所典型异常声音的特征提取[J]. 计算机工程, 2011, 36(7):208-210.
[10]赵力. 语音信号处理[M]. 北京: 机械工业出版社, 2009: 51-53.
[11]史峰,王小川,郁磊,等. Matlab神经网络30个案例分析[M]. 北京: 北京航空航天大学出版社, 2011: 21-34.

相似文献/References:

[1]冯琳琳,张兆志,王新颖,等.取代芳烃对发光菌急性毒性的QSAR研究[J].常州大学学报(自然科学版),2012,(04):8.
 FENG Lin-lin,ZHANG Zhao-zhi,WANG Xin-ying,et al.QSAR Study on Acute Toxicity of Substituted Aromatic Compounds to Photobacterium Phosphoreum[J].Journal of Changzhou University(Natural Science Edition),2012,(03):8.
[2]刘 东,周祖德.基于多代理系统的车间动态调度模型设计[J].常州大学学报(自然科学版),2008,(01):59.
 LIU D ong,ZH OU Zu- de.Model Design of Dynamic Workshop Scheduling Based on Multi- Agent System[J].Journal of Changzhou University(Natural Science Edition),2008,(03):59.
[3]时静洁,袁雄军,邵辉,等.基于遗传算法对有机物热导率的预测研究[J].常州大学学报(自然科学版),2017,(01):86.[doi:doi:10.3969/j.issn.2095-0411.2017.01.015]
 SHI Jingjie,YUAN Xiongjun,SHAO Hui,et al.Prediction of the Thermal Conductivity of Organic Compounds Based on the Genetic Algorithm[J].Journal of Changzhou University(Natural Science Edition),2017,(03):86.[doi:doi:10.3969/j.issn.2095-0411.2017.01.015]
[4]葛安杰,屠懿,彭剑.基于机器学习的含缺陷PE管道承载能力研究[J].常州大学学报(自然科学版),2022,34(06):34.[doi:10.3969/j.issn.2095-0411.2022.06.005]
 GE Anjie,TU Yi,PENG Jian.Study on the Carrying Capacity of the PE Pipeline with Defects Based on Machine Learning[J].Journal of Changzhou University(Natural Science Edition),2022,34(03):34.[doi:10.3969/j.issn.2095-0411.2022.06.005]

备注/Memo

备注/Memo:
基金项目:浙江省科技厅公益性项目资助(2011C31045) 作者简介:刘付喜(1982-),男,安徽马鞍山人,硕士生; 通讯联系人:钱苏翔。
更新日期/Last Update: 2012-06-30