[1]段锁林,顾川林.基于BP神经网络视频火灾火焰检测方法[J].常州大学学报(自然科学版),2017,(02):65-70.[doi:10.3969/j.issn.2095-0411.2017.02.012]
 DUAN Suolin,GU Chuanlin.Rsearch on the Detection Method Based on the Optimized BP Neural Network for the Visual Fire Flame Recognition[J].Journal of Changzhou University(Natural Science Edition),2017,(02):65-70.[doi:10.3969/j.issn.2095-0411.2017.02.012]
点击复制

基于BP神经网络视频火灾火焰检测方法()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2017年02期
页码:
65-70
栏目:
计算机与信息工程
出版日期:
2017-03-28

文章信息/Info

Title:
Rsearch on the Detection Method Based on the Optimized BP Neural Network for the Visual Fire Flame Recognition
作者:
段锁林顾川林
常州大学 机器人研究所,江苏 常州 213164
Author(s):
DUAN Suolin GU Chuanlin
Robotics Institute,Changzhou University,Changzhou 213164,China
关键词:
蚁群算法 BP神经网络 混合高斯模型 多特征融合
Keywords:
ant colony algorithm BP neural network gaussian mixture model multi feature fusion
分类号:
TP 391.4
DOI:
10.3969/j.issn.2095-0411.2017.02.012
文献标志码:
A
摘要:
针对视频火焰图像识别问题,采取一种结合蚁群算法(Ant Colony Algorithm)优化的BP神经网络火灾火焰检测方法。该方法克服了传统神经网络容易陷入局部最优值和收敛速度慢的问题。使用混合高斯模型建立统计模型分割火焰图像。火焰的判别特征采用面积增加率、圆形度和火焰尖角数,并且各特征量作为神经网络的输入量来得到判别火焰的最终概率。通过对大量实验数据的分析,表明该算法在可接受的时间范围内能有效改善火焰识别的准确度。
Abstract:
For the visible flame detection technology, a BP neural network method optimized by the ant colony algorithm is adopted to detect fire in this paper. This method overcomes the disadvantage of falling into local minimum and slow convergence caused by neural network. The gaussian mixture model was used to build statistical model and to divide the fire image. The growth rate of area, roundness and flame angle numbers were adopted as the feature value of flame recognition. In addition, these values will also be the input quantity for the BP neural network. The analysis of experimental data indecates that the algorithm can effectively improve the flame recognition accuracy within acceptable time.

参考文献/References:

[1]段悦.火灾探测中动态火焰的数字图像处理[J].中国计量学院学报,2009,20(1):55-58.
[2]马宗方,程咏梅.基于快速支持向量机的图像型火灾探测算法[J]. 计算机应用研究,2010,27(10):3985-3987.
[3]吴龙标,宋卫国. 图像火灾监控中一个新颖的火灾判据[J]. 火灾科学,1997,16(2):60-66.
[4]李明,吴爱国. 大空间早期火灾的双波段图像型探测方法[J].低压电器, 2007(2):37-40.
[5]谢迪,童若锋,唐敏,等.具有高区分度的视频火焰检测方法[J]. 浙江大学学报(工学版),2012,46(4):698-704.
[6]朱红红,朱正礼. 基于SVM的LEACH分簇算法优化[J]. 常州大学学报(自然科学版),2014,26(3):18-23.
[7]薛国新,王岳. 一种改进的蚁群算法求解车辆的最短路径问题[J]. 常州大学学报(自然科学版),2012,24(1):78-81.
[8]DORIGO M, MAN IEZZNO V,COLONIA. The ant system optimization by a colony of cooperating Agents[J]. IEEE Transactions on Systems Man and Cybernetics Part B,1996, 26(1):29-41.
[9]DORIGO M, BONABEAU E, THERAULAZ G.Ant algorithms and stigmergy[J]. Future Generation Computer Systems,2000,16(8):851-871.
[10]WU Q H, ZHANG J H, XU X H.An ant colony algorithm with mutation features[J].Journal of Computer Research and Development,1999, 36(10):1240-1245.
[11]DORIGO M, GAMBARDELIAL M.Ant colony system: A cooperative learning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computation, 1997, 1(1):53-66.
[12]李祚泳,汪嘉扬,郭淳,等.基于蚁群算法的BP网络优化算法[J]. 计算机应用,2010(6):1513-1515.

相似文献/References:

[1]王洪元,刘志远,卜 莹.基于蚁群优化算法的无线传感器网络跨层路由协议[J].常州大学学报(自然科学版),2014,(02):32.[doi:10.3969/j.issn.2095-0411.2014.02.009]
 WANG Hong-yuan,LIU Zhi-yuan,BU Ying.Ant Colony Optimization Algorithm For WSN CrossLayer Routing Protocol[J].Journal of Changzhou University(Natural Science Edition),2014,(02):32.[doi:10.3969/j.issn.2095-0411.2014.02.009]
[2]薛国新,王 岳.一种改进的蚁群算法求解车辆的最短路径问题[J].常州大学学报(自然科学版),2012,(01):78.
 XUE Guo-xin,WANG Yue.Improved Ant Colony Algorithm for the Shortest Vehicles Path[J].Journal of Changzhou University(Natural Science Edition),2012,(02):78.
[3]刘付喜,钱苏翔,曹 坚.基于遗传算法的BP神经网络在声音智能监控中应用[J].常州大学学报(自然科学版),2012,(03):70.
 LIU Fu-xi,QIAN Su-xiang,CAO Jian.Application of Optimized BP Neural Network Based on Genetic Algorithm in Intelligent Sound Monitoring[J].Journal of Changzhou University(Natural Science Edition),2012,(02):70.
[4]马正华,王 腾,周炯如.基于BP神经网络的太湖富营养化时空变化预测[J].常州大学学报(自然科学版),2013,(03):62.[doi:10.3969/j.issn.2095-0411.2013.03.016]
 MA Zheng hua,WANG Teng,ZHOU Jiong ru.Spatiotemporal Changes Prediction of Taihu Lake Based on BP Neural Network[J].Journal of Changzhou University(Natural Science Edition),2013,(02):62.[doi:10.3969/j.issn.2095-0411.2013.03.016]
[5]葛安杰,屠懿,彭剑.基于机器学习的含缺陷PE管道承载能力研究[J].常州大学学报(自然科学版),2022,34(06):34.[doi:10.3969/j.issn.2095-0411.2022.06.005]
 GE Anjie,TU Yi,PENG Jian.Study on the Carrying Capacity of the PE Pipeline with Defects Based on Machine Learning[J].Journal of Changzhou University(Natural Science Edition),2022,34(02):34.[doi:10.3969/j.issn.2095-0411.2022.06.005]

备注/Memo

备注/Memo:
收稿日期:2016-08-20。
基金项目:江苏省科技支撑计划项目(社会发展)(BEK2013671)。
作者简介:段锁林(1956—),男,陕西岐山人,博士,教授,主要从事智能机器人视觉控制技术研究。
更新日期/Last Update: 2017-04-01