参考文献/References:
[1]季洪雷, 周青超, 潘俊, 等. 量子点液晶显示背光技术[J]. 中国光学, 2017, 10(5): 666-680.
[2]国云, 周敏. 量子点生物传感器及其在生物医学分析检测中的应用[J]. 传感器与微系统, 2017, 36(11): 6-9, 13.
[3]OWEN J, BRUS L. Chemical synthesis and luminescence applications of colloidal semiconductor quantum dots[J]. Journal of the American Chemical Society, 2017, 139(32): 10939-10943.
[4]SHENG Y, LIAO L D, THAKOR N V, et al. Nanoparticles for molecular imaging[J]. Journal of Biomedical Nanotechnology, 2014, 10(10): 2641-2676.
[5]MUGNANO M, MEMMOLO P, MICCIO L, et al. In vitro cytotoxicity evaluation of cadmium by label-free holographic microscopy[J]. Journal of Biophotonics, 2018, 11(12): e201800099.
[6]SHARMA V K, MCDONALD T J, SOHN M, et al. Assessment of toxicity of selenium and cadmium selenium quantum dots: a review[J]. Chemosphere, 2017, 188: 403-413.
[7]XU G X, ZENG S W, ZHANG B T, et al. New generation cadmium-free quantum dots for biophotonics and nanomedicine[J]. Chemical Reviews, 2016, 116(19): 12234-12327.
[8]WANG H C, ZHANG H, CHEN H Y, et al. Cadmium-free InP/ZnSeS/ZnS heterostructure-based quantum dot light-emitting diodes with a ZnMgO electron transport layer and a brightness of over 10 000 cd·m-2[J]. Small, 2017, 13(13): 1603962.
[9]SANDRONI M, GUERET R, WEGNER K D, et al. Cadmium-free CuInS2/ZnS quantum dots as efficient and robust photosensitizers in combination with a molecular catalyst for visible light-driven H2 production in water[J]. Energy & Environmental Science, 2018, 11(7): 1752-1761.
[10]CAI C Q, ZHAI L L, MA Y H, et al. Synthesis of AgInS2 quantum dots with tunable photoluminescence for sensitized solar cells[J]. Journal of Power Sources, 2017, 341: 11-18.
[11]GABKA G, BUJAK P, KOTWICA K, et al. Luminophores of tunable colors from ternary Ag-In-S and quaternary Ag-In-Zn-S nanocrystals covering the visible to near-infrared spectral range[J]. Physical Chemistry Chemical Physics: PCCP, 2017, 19(2): 1217-1228.
[12]GUAN Z Y, TANG A W, LYU P, et al. New insights into the formation and color-tunable optical properties of multinary Cu-In-Zn-based chalcogenide semiconductor nanocrystals[J]. Advanced Optical Materials, 2018, 6(10): 1701389.
[13]WANG J, DENG T, DENG D W, et al. Quaternary alloy quantum dots with widely tunable emission-a versatile system to fabricate dual-emission nanocomposites for bio-imaging[J]. RSC Advances, 2016, 6(59): 53760-53767.
[14]周蓓莹, 陈东, 刘佳乐, 等. CuInS2/ZnS核壳结构量子点的水相制备与性能研究[J]. 无机材料学报, 2018, 33(3): 279-283.
[15]MAO B D, CHUANG C H, MCCLEESE C, et al. Near-infrared emitting AgInS2/ZnS nanocrystals[J]. Journal of Physical Chemistry C, 2014, 118(25): 13883-13889.
[16]TANG X S, CHEN W W, ZU Z Q, et al. Nanocomposites of AgInZnS and graphene nanosheets as efficient photocatalysts for hydrogen evolution[J]. Nanoscale, 2015, 7(44): 18498-18503.
[17]KOBOSKO S M, KAMAT P V. Indium-rich AgInS2-ZnS quantum dots: Ag-/ Zn-dependent photophysics and photovoltaics[J]. Journal of Physical Chemistry C, 2018, 122(26): 14336-14344.
[18]FAHMI M Z, CHANG J Y. Potential application of oleylamine-encapsulated AgInS2-ZnS quantum dots for cancer cell labeling[J]. Procedia Chemistry, 2016, 18: 112-121.
[19]ZHU B Y, JI W, DUAN Z Q, et al. Low turn-on voltage and highly bright Ag-In-Zn-S quantum dot light-emitting diodes[J]. Journal of Materials Chemistry C, 2018, 6(17): 4683-4690.
[20]YE Y, ZANG Z G, ZHOU T W, et al. Theoretical and experimental investigation of highly photocatalytic performance of CuInZnS nanoporous structure for removing the NO gas[J]. Journal of Catalysis, 2018, 357: 100-107.
[21]GIRMA W M, FAHMI M Z, PERMADI A, et al. Synthetic strategies and biomedical applications of I-III-VI ternary quantum dots[J]. Journal of Materials Chemistry B, 2017, 5(31): 6193-6216.
[22]LI S Q, TANG X S, ZANG Z G, et al. I-III-VI chalcogenide semiconductor nanocrystals: synthesis, properties, and applications[J]. Chinese Journal of Catalysis, 2018, 39(4): 590-605.
[23]TANG X S, HO W B A, XUE J M. Synthesis of Zn-doped AgInS2 nanocrystals and their fluorescence properties[J]. Journal of Physical Chemistry C, 2012, 116(17): 9769-9773.
[24]SHENG Y, TANG X S, XUE J M. Synthesis of AIZS@SiO2core-shell nanoparticles for cellular imaging applications[J]. J Mater Chem, 2011, 22(4): 1290-1296.
[25]SHENG Y, TANG X S, PENG E, et al. Graphene oxide based fluorescent nanocomposites for cellular imaging[J]. J Mater Chem B, 2013, 1(4): 512-521.
[26]OH J K. Surface modification of colloidal CdX-based quantum dots for biomedical applications[J]. Journal of Materials Chemistry, 2010, 20(39): 8433.
[27]CHEN H T, WANG T, LI K M, et al. Effects of surface modification of quantum dots on viability and migration of triple-negative breast cancer cells[J]. Journal of Colloid and Interface Science, 2017, 485: 51-58.
相似文献/References:
[1]王建浩,张晨澄,李静燕,等.毛细管电泳在量子点生物分析中的应用[J].常州大学学报(自然科学版),2015,(03):84.[doi:10.3969/j.issn.2095-0411.2015.03.017]
WANG Jianhao,ZHANG Chencheng,LI Jingyan,et al.The Application of Capillary Electrophoresis in Quantum Dots Bioanalysis[J].Journal of Changzhou University(Natural Science Edition),2015,(06):84.[doi:10.3969/j.issn.2095-0411.2015.03.017]
[2]赖梨芳,陈林提,程美令,等.基于3,4-吡唑二甲酸的锌配合物的合成、晶体结构和荧光性质[J].常州大学学报(自然科学版),2017,(05):16.[doi:10.3969/j.issn.2095-0411.2017.05.003]
LAI Lifang,CHEN Linti,CHENG Meiling,et al.Synthesis, Crystal Structure and Luminescent Property of Zinc
Complex Based on 3,4-Pyrazoledicarboxylic Acid Ligand[J].Journal of Changzhou University(Natural Science Edition),2017,(06):16.[doi:10.3969/j.issn.2095-0411.2017.05.003]
[3]陶永新,杨学波.噻二唑类化合物的制备及其荧光性能[J].常州大学学报(自然科学版),2017,(06):1.[doi:10.3969/j.issn.2095-0411.2017.06.001]
TAO Yongxin,YANG Xuebo.Synthesis and Fluorescent Properties of Thiadiazole-Based Compounds[J].Journal of Changzhou University(Natural Science Edition),2017,(06):1.[doi:10.3969/j.issn.2095-0411.2017.06.001]
[4]马 骁,李继鹏,薛 阳,等.高量子产率吡啶嗡盐可逆机械变色荧光性质[J].常州大学学报(自然科学版),2020,32(04):19.[doi:10.3969/j.issn.2095-0411.2020.04.003]
MA Xiao,LI Jipeng,XUE Yang,et al.Study of Reversible Mechanochromic Fluorescence Property of
Pyridinium Salt with High Quantum Yield[J].Journal of Changzhou University(Natural Science Edition),2020,32(06):19.[doi:10.3969/j.issn.2095-0411.2020.04.003]
[5]张艳秋,孙旻睿,杜尔登,等.Eu3+修饰配位聚合物的构筑及对水中Pb2+的荧光检测[J].常州大学学报(自然科学版),2022,34(05):39.[doi:10.3969/j.issn.2095-0411.2022.05.006]
ZHANG Yanqiu,SUN Minrui,DU Erdeng,et al.Fluorescent Detection of Pb2+ in Water Environment by a Eu3+ Functionalized Coordination Polymer[J].Journal of Changzhou University(Natural Science Edition),2022,34(06):39.[doi:10.3969/j.issn.2095-0411.2022.05.006]