[1]吕晓方,左江伟,路大勇,等.流动体系CO2水合物诱导时间影响因素敏感性分析[J].常州大学学报(自然科学版),2019,31(06):60-68.
 LYU Xiaofang,ZUO Jiangwei,LU Dayong,et al.Sensitivity Analysis of Factors Affecting the Induction Time of CO2 Hydrate in Flow System[J].Journal of Changzhou University(Natural Science Edition),2019,31(06):60-68.
点击复制

流动体系CO2水合物诱导时间影响因素敏感性分析()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第31卷
期数:
2019年06期
页码:
60-68
栏目:
石油与天然气工程
出版日期:
2019-11-28

文章信息/Info

Title:
Sensitivity Analysis of Factors Affecting the Induction Time of CO2 Hydrate in Flow System
文章编号:
2095-0411(2019)06-0060-09
作者:
吕晓方左江伟路大勇周诗岽赵会军王树立
(常州大学 石油工程学院,江苏 常州 213164)
Author(s):
LYU Xiaofang ZUO Jiangwei LU Dayong ZHOU Shidong ZHAO Huijun WANG Shuli
(School of Petroleum Engineering, Changzhou University, Changzhou 213164, China)
关键词:
CO2水合物 诱导期 压力 载液量 流量 敏感性分析
Keywords:
CO2 hydrate induction period pressure liquid carrying capacity flow rate sensitivity analysis
分类号:
TE 832
文献标志码:
A
摘要:
水合物诱导期是表征水合物生成过程的重要参数,借助高压可视水合物环路,以CO2和水为实验介质开展流动体系水合物生成实验,探究了初始压力、载液量、体系流量对诱导期的影响规律,并应用多因素分析法计算了各影响因素的敏感性大小。实验研究结果表明:①CO2水合物诱导期随初始压力的增大而缩短,在载液量9 L、泵速30 Hz的实验体系下,初始压力为2.5 MPa和2.8 MPa所对应的诱导时间分别为27.2 min和23.6 min,而3 MPa下诱导期仅为17.4 min,分别缩短了13.24%和26.27%; 在7 L,30 Hz及8 L,30 Hz的实验下诱导期呈同样的变化趋势,高的初始压力能明显降低CO2水合物生成诱导时间。②诱导时间随着管路载液量的增加呈现先减小后增大的趋势。③在初始压力为2.8 MPa,载液量7 L的实验工况下,质量流量为20,25,28 kg/min所对应的诱导时间分别为25,22.5,18.4 min,即随着流量的增大诱导时间缩短。④通过对比不同影响因素的标准回归系数,发现实验流量对纯水体系CO2水合物诱导期起主导作用,初始压力的影响次之,载液量影响最小。
Abstract:
Hydrate induction period is one of the critical parameters to characterize the formation process of hydrate. Hydrate formation experiments of flow system were conducted with CO2 and water in a high-pressure visual hydrate loop. This study explored the effects of the initial pressure, liquid loading and system flow rate on the induction period, and calculated the sensitivity of each influencing factor through multi-factor analysis. The results indicated that: ① The induction period of CO2 hydrate decreased with the increase of the initial pressure. Under the experimental system of 9 L liquid loading and 30 Hz pump speed, the induction time corresponding to the initial pressure of 2.5 MPa and 2.8 MPa was 27.2 min and 23.6 min, respectively. While the initial pressure was 3 MPa, the induction period was only 17.4 min, which decreased 13.24% and 26.27%. The induction period showed the same changing trend in 7 L, 30 Hz and 8 L, 30 Hz experimental conditions. High initial pressure could significantly reduce the induction time of CO2 hydrate formation. ② The induction time firstly decreased and then increased with the increase of pipeline liquid loading. ③ Under the experimental conditions of initial pressure of 2.8 MPa and liquid loading of 7 L, the induction time corresponding to mass flow of 20, 25 and 28 kg/min was 25, 22.5 and 18.4 min, respectively. Therefore, the induction time decreased with the increase of flow rate. ④ The standard regression analysis of different influencing factors indicated that the experimental flow rate played a dominant role in the induction period of CO2 hydrate in pure water system, followed by the initial pressure and the liquid loading. This study can provide some implications for the prevention and control of hydrate and the safe operation of oil and gas pipelines.

参考文献/References:

[1]SLOAN E D,KOH C A. Clathrate hydrates of natural gases[M]. New York:CRC Press,2008.
[2]SOHN Y H,KIM J,SHIN K,et al. Hydrate plug formation risk with varying water-cut and inhibitor concentrations[J].Chemical Engineering Science,2015,126(2):711-718.
[3]KOH C A, SUM A K, SLOAN E D. State of the art:natural gas hydrates as a natural resource[J]. Journal of Natural Gas Science & Engineering,2012,8(5):132-138.
[4]HAMMERSCHMIDT E G. Formation of gas hydrates in natural gas transmission lines[J]. Industrial & Engineering Chemistry,1934,26(8):851-855.
[5]雍宇,史博会,丁麟,等.水合物生成诱导期研究进展[J]. 化工进展,2018,37(2):505-516.
[6]ZHOU S D,YAN H Y,SU D,et al. Investigation on the kinetics of carbon dioxide hydrate formation using flow loop testing[J]. Journal of Natural Gas Science and Engineering,2018,49:385-392.
[7]吕晓方,王莹,李文庆,等.天然气油基水合物浆液流动实验[J]. 天然气工业,2014,34(11):108-114.
[8]LYU X F,SHI B H,WANG Y,et al. Experimental study on hydrate induction time of gas-saturated water-in-oil emulsion using a high-pressure flow loop[J].Oil & Gas Science & Technology,2014,70(6):253-268.
[9]李刚,李小森.过冷度对气体水合物合成影响的实验研究[J]. 现代地质,2010,24(3):627-631.
[10]CHEN J,CHEN G J,YUAN Q,et al. Insights into induction time and agglomeration of methane hydrate formation in diesel oil dominated dispersed systems[J]. Energy,2019,170:604-610.
[11]刘瑜,赵佳飞,郭长松,等.Ⅰ型和Ⅱ型结构气体水合物的记忆效应[J]. 物理化学学报,2011,27(6):1305-1311.
[12]孙登林,吴强,张保勇.“记忆效应”对瓦斯水合物生成诱导时间的影响[J]. 哈尔滨工业大学学报,2006,38(12):2177-2179.
[13]王树立,饶永超,周诗岽,等.水合物法天然气管道输送的实验研究[J]. 天然气工业,2014,34(11):101-107.
[14]WANG S, YANG M, LIU W, et al. Investigation on the induction time of methane hydrate formation in porous media under quiescent conditions[J]. Journal of Petroleum Science and Engineering, 2016,145:565-572.
[15]陈玉川,史博会,李文庆,等.水合物动力学抑制剂的作用机理研究进展[J]. 化工进展,2018,37(5):1726-1743.
[16]TALAGHAT M R. Experimental investigation of induction time for double gas hydrate formation in the simultaneous presence of the PVP and L-tyrosine as kinetic inhibitors in a mini flow loop apparatus[J]. Journal of Natural Gas Science & Engineering,2014,19(7):215-220.
[17]俞冬梅,陈硕,王树立,等.凹凸棒石体系下CO2水合物生成动力学实验[J].化工进展,2018,37(2):546-553.
[18]MORAVEJI M K,GHAFFARKHAH A,SADEGHI A. Effect of three representative surfactants on methane hydrate formation rate and induction time[J]. Egyptian Journal of Petroleum,2017,26(2):331-339.
[19]李文昭,潘振,马贵阳,等. 表面活性剂吸附对促进甲烷水合物生成效果的影响[J]. 化工学报,2017,68(4):1542-1549.
[20]ABKENAR M R,MANTEGHIAN M, PAHLAVANZADEH H. Experimental and theoretical investigation of methane hydrate induction time in the presence of triangular silver nanoparticles[J]. Chemical Engineering Research and Design,2017,120:325-332.
[21]MOLOKITINA N S,NESTEROV A N,PODENKO L S,et al. Carbon dioxide hydrate formation with SDS:further insights into mechanism of gas hydrate growth in the presence of surfactant[J]. Fuel,2019,235:1400-1411.
[22]史博会,雍宇,柳杨,等.含蜡和防聚剂体系天然气水合物浆液生成及流动特性[J].化工进展,2018,37(6):2182-2191.
[23]庞维新,姚海元,李清平,等.水合物防聚剂的性能评价和现场测试[J]. 石油化工,2016,45(7):862-867.
[24]HOU G D,LIANG D Q,LI X S. Experimental study on hydrate anti-agglomeration in the presence of rhamnolipid[J]. RSC Advances,2018,8(69):39511-39519.
[25]KANG S P,SHIN J Y,LIM J S,et al. Experimental measurement of the induction time of natural gas hydrate and its prediction with polymeric kinetic inhibitor[J]. Chemical Engineering Science,2014,116(36):817-823.
[26]RASOOLZADEH A,JAVANMARDI J. Experimental study and modeling of methane hydrate formation induction time in the presence of ionic liquids[J]. Journal of Molecular Liquids,2016,211:149-155.
[27]胡亚飞,蔡晶,徐纯刚,等.气体水合物相变热研究进展[J].化工进展,2016,35(7):2021-2032.
[28]周诗岽,陈小康,边慧,等.CO2水合物在管道中的生成及堵塞特性[J]. 化工进展,2018,37(11):4250-4256.
[29]王世海. 驱动力影响下瓦斯水合分离试验研究[D]. 哈尔滨:黑龙江科技大学,2016:6-17.
[30]MAEDA N,WELLS D,HARTLEY P G,et al. Statistical analysis of supercooling in fuel gas hydrate systems[J]. Energy & Fuels,2012,26(3):1820-1827.
[31]SONG G C,LI Y X,WANG W C,et al. Investigation of hydrate plugging in natural gas+diesel oil+water systems using a high-pressure flow loop[J].Chemical Engineering Science,2017,158:480-489.
[32]秦宏波,白晓宁,胡寿根,等. 管内固-液两相流动阻力特性影响因素的敏感性分析[J]. 力学季刊,2002,23(4):558-562.
[33]庞超明,黄宏.试验方案优化设计与数据分析[M]. 南京:东南大学出版社,2018:51-58.
[34]姚海元,李清平,陈光进,等.四氢呋喃水合物浆液黏度影响因素敏感性分析[J]. 化学工程,2008,36(7):43-46.

相似文献/References:

[1]余汇军,王树立,江光世,等.表面活性剂对CO2水合物生成影响的实验研究[J].常州大学学报(自然科学版),2011,(02):55.
 YU Hui-jun,WANG Shu-li,JIANG Guang-shi,et al.Experimental Study of the Impact of Compound Additives on CO2 Hydrate Formation Conditions[J].Journal of Changzhou University(Natural Science Edition),2011,(06):55.
[2]王树立,代文杰,刘墨夫,等.鼠李糖脂促进CO2水合物生成实验[J].常州大学学报(自然科学版),2017,(04):66.[doi:10.3969/j.issn.2095-0411.2017.04.011]
 WANG Shuli,DAI Wenjie,LIU Mofu,et al.Experimental Research on CO2 Hydrate Formation Promoted by Rrhamnolipid[J].Journal of Changzhou University(Natural Science Edition),2017,(06):66.[doi:10.3969/j.issn.2095-0411.2017.04.011]
[3]柳 扬,吕晓方,史博会,等.含蜡W/O体系水合物成核特性与诱导期模型[J].常州大学学报(自然科学版),2021,33(05):77.[doi:10.3969/j.issn.2095-0411.2021.05.010]
 LIU Yang,LYU Xiaofang,SHI Bohui,et al.Hydrate Nucleation Characteristics of Waxy W/O(Water-in-Oil) Systems and Its Induction Time Model[J].Journal of Changzhou University(Natural Science Edition),2021,33(06):77.[doi:10.3969/j.issn.2095-0411.2021.05.010]

备注/Memo

备注/Memo:
收稿日期:2019-04-11。
基金项目:国家自然科学基金资助项目(51804046); 中国石油科技创新基金研究资助项目(2018D-5007-0602); 江苏省教育厅面上研究资助项目(18KJB440001)。
作者简介:吕晓方(1989—),男,河南濮阳人,博士,讲师。E-mail:lvxiaofang5@cczu.edu.cn
更新日期/Last Update: 2019-12-02