[1]吴王平,江鹏,苏少航,等.贵金属催化剂在甲烷干重整中的研究[J].常州大学学报(自然科学版),2015,(04):31-37.[doi:10.3969/j.issn.2095-0411.2015.04.006]
 WU Wangping,JIANG Peng,SU Shaohang,et al.Review on Noble Metal Catalysts for Dry Reforming of Methane[J].Journal of Changzhou University(Natural Science Edition),2015,(04):31-37.[doi:10.3969/j.issn.2095-0411.2015.04.006]
点击复制

贵金属催化剂在甲烷干重整中的研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2015年04期
页码:
31-37
栏目:
化学化工
出版日期:
2015-11-15

文章信息/Info

Title:
Review on Noble Metal Catalysts for Dry Reforming of Methane
作者:
吴王平江鹏苏少航华同曙
常州大学 机械工程学院,江苏 常州 213164
Author(s):
WU Wangping JIANG Peng SU Shaohang HUA Tongshu
School of Mechanical Engineering, Changzhou University, Changzhou 213164, China
关键词:
贵金属 催化剂 甲烷重整 二氧化碳
Keywords:
noble metal catalyst methane reforming carbon dioxide
分类号:
TQ 032.41
DOI:
10.3969/j.issn.2095-0411.2015.04.006
文献标志码:
A
摘要:
甲烷和二氧化碳是两种重要温室气体,可通过重整反应制合成气,所制合成气可通过费-托合成转化成高附加值产品,对缓解能源危机具有重大意义。常用的负载型镍催化剂由于在反应过程中产生积炭,导致活性下降。贵金属具有优异的催化性能和稳定性,比镍催化剂具有更好的抗积炭性能。为设计出较好稳定性的催化剂,主要综述贵金属催化剂对甲烷干重整的动力学和催化反应机理,同时结合催化剂、载体及制备方法等进行阐述。
Abstract:
Both methane and carbon dioxide are two major greenhouse gases, which can be used to produce syngas by reforming reaction. The syngas can be used to manufacture high value-added products using Ficher-Tropsch synthesis, which has an important significance for alleviating the energy crisis. The carbon deposition is formed using the commonly supported nickel catalyst, which results in the decrease of catalytic activity. Noble metals have an excellent catalytic performance and good stability. The carbon deposition resistance of supported noble metals is better than that of supported nickel catalyst in dry reforming of methane. In order to design well stable catalysts, the kinetic reaction models and catalytic reaction mechanism of noble metal catalysts in dry reforming of methane are reviewed, at the same time combining with catalysts, supports, preparation methods and so on.

参考文献/References:

[1]Global gas flaring reduction public private partnership(GGFR). Estimated flared volumes from satellite data, 2007-2012[R/OL].
[2015-03-10]. http://www.worldbank.org/en/programs/gasflaringreduction.
[2]OLAJIRE A A. Valorization of greenhouse carbon dioxide emissions into value-added products by catalytic processes [J].J CO2 Utiliz, 2013, 3/4: 74-92.
[3]BARRAI F, JACKSON T, WHITMORE N, et al. The role of carbon deposition on precious metal catalyst activity during dry reforming of biogas [J].Catal Today, 2007, 129(3/4): 391-396.
[4]DING R G, YAN Z F, SONG L H, et al. A review of dry deforming of methane over various catalysts [J].J Natural Gas Chem, 2001, 10(3): 237-255.
[5]井强山.甲烷催化转化制合成气研究 [M].郑州: 郑州大学出版社, 2008.
[6]张安杰. Ni基催化剂上甲烷二氧化碳重整制合成气的研究[D]. 大连: 大连理工大学, 2011.
[7]姜洪涛, 华 炜, 计建炳. 甲烷重整制合成气镍催化剂积炭研究[J].化学进展, 2013, 25(5): 859-868.
[8]EDWARDS J H, MAITRA A M. The chemistry of methane reforming with carbon dioxide and its current and potential applications [J].Fuel Process Technol, 1995, 42(2/3): 269-289.
[9]PAKHARE D, SHAW C, HAYNES D, et al. Effect of reaction temperature on activity of Pt-and Ru-substituted lanthanum zirconate pyrochlores(La2Zr2O7)for dry(CO2)reforming of methane(DRM)[J].J CO2 Utiliz, 2013, 1: 37-42.
[10]FRAENKEL D, LEYITAN R, LEVY M. A solar thermochemical pipe based on the CO2:CH4(1:1)system [J].Int J Hydrogen Energ, 1986, 11(4): 267-277.
[11]KATHIRASER Y, OEMAR U, SAW E T, et al. Kinetic and mechanistic aspects for CO2 reforming of methane over Ni based catalysts [J].Chem Eng J, 2015, 278: 62-78.
[12]NEMATOLLAHI B, REZAEI M, KHAJENOORI M. Combined dry reforming and partial oxidation of methane to synthesis gas on noble metal catalysts [J].Inter J Hydrogen Energ, 2011, 36(6): 2969-2978.
[13]REZAEI M, ALAVI S M, SAHEBDELFAR S, et al. Syngas production by methane reforming with carbon dioxide on noble metal catalysts [J].J Natural Gas Chem, 2006, 15(4): 327-334.
[14]USMAN M, WAN DAUD W M A, ABBAS H F. Dry reforming of methane: Influence of process parameters-A review [J].Renewable and Sustainable Energy Reviews, 2015, 45: 710-744.
[15]RICHARDSON J T, PARIPATYADSR S A. Carbon dioxide reforming of methane with supported rhodium [J].Appl Catal, 1990, 61(2): 293-309.
[16]ERDOHELY A, CSERENY J, SOLYMOST F. Activation of CH4 and its reduction with CO2 over supported Rh catalysts [J].J Catal, 1993, 141(1): 287-299.
[17]TOYIR J, GELIN P, BELATEL H, et al. Ir/Ce0.9Gd0.1O2-x as a new potential anode component in solid oxide fuel cells integrating the concept of gradual internal reforming of methane [J].Catal Today, 2010, 157(1/2/3/4): 451-455.
[18]MEI D H, GLEZAKOU V A, LEBARBIER V, et al. Highly active and stable MgAl2O4-supported Rh and Ir catalysts for methane steam reforming: A combined experimental and theoretical study [J].J Catal, 2014, 316: 11-23.
[19]NAKAGAWA K, IKENAGA N, SUZUKI T, et al. Partial oxidation of methane to synthesis gas over supported iridium catalysts [J].Appl Catal A: Gen, 1998, 169(1/2): 281-290.
[20]LI D L, NAKAGAWA Y, TOMISHIGE K. Methane reforming to synthesis gas over Ni catalysts modified with noble metals [J].Appl Catal A: Gen, 2011, 408(1/2): 1-24.
[21]HOU Z, YASHIMA T. Small amounts of Rh-promoted Ni catalysts for methane reforming with CO2 [J].Catal Lett, 2003, 89(3): 193-197.
[22]SHEKHAWAT D, SPIVEY J J, BERRY D A. Fuel cells: technologies for fuel processing [M]. Holland: Elsevier Science, 2011: 191-221.
[23]CRISAFULLI C, SCIRE S, MAGGIORE R, et al. CO2 reforming of methane over Ni-Ru and Ni-Pd bimetallic catalysts [J].Catal Lett, 1999, 59(1): 21-26.
[24]STEINHAUER B, KASIREDDY M R, RADNIK J, et al. Development of Ni-Pd bimetallic catalysts for the utilization of carbon dioxide and methane by dry reforming [J].Appl Catal A:Gen, 2009, 366(2): 333-341.
[25]NAKAGAWA K, IKENAGA N, TENG Y H, et al. Partial oxidation of methane to synthesis gas over iridium±nickel bimetallic catalysts [J].Appl Catal A: Gen, 1999, 180(1/2): 183-193.
[26]NAGAOKA K, TAKANABE K, AIKA K. Modification of Co/TiO2 for dry reforming of methane at 2 MPa by Pt, Ru or Ni [J].Appl Catal, A, 2004, 268(1/2): 151-158.
[27]PAKHARE D, SPIVEY J. A review of dry(CO2)reforming of methane over noble metal catalysts [J].Chem Soc Rev, 2014, 43(22): 7813-7837.
[28]WU J C S, CHOU H C. Bimetallic Rh-Ni/BN catalyst for methane reforming with CO2 [J].Chem Eng J, 2009, 148(2/3): 539-545.
[29]史泰尔斯A B. 催化剂载体与负载型催化剂[M].李大东, 钟孝湘, 译. 北京: 中国石化出版社, 1992.
[30]BASILE A, PAOLA L D, HAI F, et al. Membrane reactors for energy applications and basic chemical production [M]. England: Woodhead Publishing, 2015: 99-144.
[31]GARCIA-GARCIA F R, SORIA M A, MATEOS-PEDRERO C, et al. Dry reforming of methane using Pd-based membrane reactors fabricated from different substrates [J].J Membr Sci, 2013, 435: 218-225.
[32]FAROLDI B, BOSKO M L, MUNERA J, et al. Comparison of Ru/La2O2CO3 performance in two different membrane reactors for hydrogen production [J].Catal Today, 2013, 213: 135-144.
[33]BOSKO M L, MUNERA J F, LOMBARDO E A, et al. Dry reforming of methane in membrane reactors using Pd and Pd-Ag composite membranes on a NaA zeolite modified porous stainless steel support [J].J Membr Sci, 2010, 364(1/2): 17-26.
[34]SIGL M, BRADFORD M C J, KNOZINGER H, et al. CO2 reforming of methane over vanadia-promoted Rh/SiO2 catalysts[J].Top Catal, 1999, 8(3): 211-222.
[35]LAU P S, NG K M. Carbon dioxide reforming of methane by solid state synthesis supported catalysts [J].Inter J Hydrogen Energ, 2014, 39(34): 19513-19518.
[36]索掌怀, 徐秀峰, 马华宪, 等. 制备方法对Ni/MgO/Al2O3催化剂在甲烷与二氧化破重整反应活性的影响 [J].催化学报, 2000, 21(5): 411-414.
[37]KRIJN P de Jong.固体催化剂合成 [M].中国石化催化剂有限公司, 译. 北京: 中国石化出版社, 2014.
[38]GOULD T D, MONTEMORE M M, LUBERS A M, et al. Enhanced dry reforming of methane on Ni and Ni-Pt catalysts synthesized by atomic layer deposition [J].Appl Catal A: Gen, 2015, 492: 107-116.
[39]ZHU B, LI X S, LIU J L, et al. Kinetics study on carbon dioxide reforming of methane in kilohertz spark-discharge plasma [J].Chem Eng J, 2015, 264: 445-452.
[40]CUI Y H, ZHANG H D, XU H Y, et al. Kinetic study of the catalytic reforming of CH4 with CO2 to syngas over Ni/α-Al2O3 catalyst: The effect of temperature on the reforming mechanism [J].Appl Catal A: Gen, 2007, 318: 79-88.
[41]FREITAS A C D, GUIRARDELLO R. Thermodynamic analysis of methane reforming with CO2, CO2 + H2O, CO2 + O2 and CO2 + air for hydrogen and synthesis gas production [J].J CO2 Utiliz, 2014, 7: 30-38.
[42]BITTER J H, HALLY W, SESHAN K, et al. The role of the oxide support on the deactivation of Pt catalysts during the CO2 reforming of methane [J], Catal Today, 1996, 29(1/4): 349-353.
[43]RICHARDSON J T, PARIPATYADAR S A. Carbon dioxide reforming of methane with supported rhodium [J].Appl Catal, 1990, 61(2): 293-309.
[44]MARK M F, MARK F, MAIER W F. Reaction kinetics of the CO2 reforming of methane [J].Chem Eng Technol, 1997, 20(6): 361-370.
[45]GALLEGO G S, BATIOT-DUPEYRAT C, BARRAULT J, et al. Dual active-site mechanism for dry methane reforming over Ni/La2O3 produced from LaNiO3 perovskite [J].Ind Eng Chem Res, 2008, 47(23): 9272-9278.
[46]SOUZA M, ARANDA D A G, SCHMAL M. Reforming of methane with carbon dioxide over Pt/ZrO2/Al2O3 catalysts [J].J Catal, 2001, 204(2): 498-511.
[47]QUIROGA M M B, LUNA A E C. Kinetic analysis of rate data for dry reforming of methane [J].Ind Eng Chem Res, 2007, 46(16): 5265-5270.
[48]XU J, FROMENT G F. Methane steam reforming, methanation and water-gas shift: 1. Intrinsic kinetics [J].Aiche Journal, 1989, 35(1): 88-96.
[49]ZHANG Z L, VERYKIOS X E. Mechanistic aspects of carbon dioxide reforming of methane to synthesis gas over Ni catalysts[J]. Catalysis Letters, 1996, 38(3): 175-179.
[50]FAN M, ABDULLAH A Z, BHATIA S. Catalytic technology for carbon dioxide reforming of methane to synthesis gas[J]. Chem Cat Chem, 2009, 1(2): 192-208.
[51]ABREU C A M, SANTOS D A, PACIFICO J A, et al. Kinetic evaluation of methane-carbon dioxide reforming process based on the reaction steps[J]. Industrial & Engineering Chemistry Research, 2008, 47(14): 4617-4622.
[52]ALEKSANDRO E A M S, LEONARDO J L M, VALDERIO O C F, et al. Kinetic-operational mechanism to autothermal reforming of methane[J]. Industrial & Engineering Chemistry Research, 2011, 50(5): 2585-2599.

相似文献/References:

[1]符孟乐,于鼎杰,赵会晶,等.KFe/ZrO2的制备及催化合成丙烯酸羟丙酯[J].常州大学学报(自然科学版),2014,(01):18.[doi:10.3969/j.issn.2095-0411.2014.01.005]
 FU Meng-le,YU Ding-jie,ZHAO Hui-jing,et al.Study of KFe/ZrO2 Preparation and Catalytic Synthesis of Hydroxypropyl Acrylate[J].Journal of Changzhou University(Natural Science Edition),2014,(04):18.[doi:10.3969/j.issn.2095-0411.2014.01.005]
[2]刘建武,张 跃,谢国红,等.H3 PW12O40 / Al2O3 催化甘油合成丙烯醛的工艺[J].常州大学学报(自然科学版),2010,(01):17.
 L IU J ian - wu,ZHAN G Yue,XIE Guo - hong,et al.Study of Synthesis of Acrolein Using H3 PW12O40 / Al2O3 as Catalyst[J].Journal of Changzhou University(Natural Science Edition),2010,(04):17.
[3]徐万平,邓凤霞,曹引梅.苯基二氯化膦的新工艺[J].常州大学学报(自然科学版),2010,(03):31.
 XU Wan- ping,DENG Feng- xia,CAO Yin- mei.Improved Synthetic Method of Dicholrophenylphosphine[J].Journal of Changzhou University(Natural Science Edition),2010,(04):31.
[4]蒋志国,单玉华,周永生,等.铜基复合氧化物催化乙醇脱氢氨化合成乙腈[J].常州大学学报(自然科学版),2010,(04):19.
 JIANG Zhi- guo,SHAN Yu- hua,Zho u Yong- sheng,et al.Study of the Dehydroamination of Ethanol to Acetonitrile Catalyzed by Copper- Based Composite Oxides[J].Journal of Changzhou University(Natural Science Edition),2010,(04):19.
[5]潘学林,单玉华,任海永,等.乙酸与异丁酸催化合成甲基异丙基酮催化剂[J].常州大学学报(自然科学版),2011,(02):11.
 PAN Xue-lin,SHAN Yu-hua,REN Hai-yong,et al.Study of the Catalysts for Preparation of Methyl Isopropyl Ketonefrom Acetic Acid and Isobutyric Acid[J].Journal of Changzhou University(Natural Science Edition),2011,(04):11.
[6]吴 霞,单玉华,任海永,等.2,4-二氯苯氧乙酸合成清洁技术研究[J].常州大学学报(自然科学版),2012,(01):10.
 WU Xia,SHAN Yu-hua,REN Hai-yong,et al.Development of a Clean Technique for the Synthesis of 2,4-Dichlorophenoxyacetic Acid[J].Journal of Changzhou University(Natural Science Edition),2012,(04):10.
[7]储海霞,单玉华,丁永红,等.硫化钠法合成PPS的溶剂和催化体系的考察[J].常州大学学报(自然科学版),2012,(02):17.
 CHU Hai-xia,SHAN Yu-hua,DING Yong-hong,et al.Investigation of the Solvents and Catalysts in Poly(Phenylene Sulfide)Synthesis[J].Journal of Changzhou University(Natural Science Edition),2012,(04):17.
[8]梁翠荣,金桂花,吴胜楠,等.点击化学应用于合成1,2,3-三唑衍生物的研究进展[J].常州大学学报(自然科学版),2015,(01):54.[doi:10.3969/ j.issn.2095-0411.2015.01.011]
 LIANG Cui-rong,JIN Gui-hua,WU Sheng-nan,et al.Recent Progress in Application of Click Chemistry in the Synthesis of 1,2,3-Triazoles Derivatives[J].Journal of Changzhou University(Natural Science Edition),2015,(04):54.[doi:10.3969/ j.issn.2095-0411.2015.01.011]
[9]张后甫,郝晓琼,银凤翔,等.Ni/de-ZSM催化剂的制备及其氨分解制氢性能[J].常州大学学报(自然科学版),2022,34(02):8.[doi:10.3969/j.issn.2095-0411.2022.02.002]
 ZHANG Houfu,HAO Xiaoqiong,YIN Fengxiang,et al.Preparation of Ni/de-ZSM Catalyst and Its Performance in Hydrogen Production by Ammonia Decomposition[J].Journal of Changzhou University(Natural Science Edition),2022,34(04):8.[doi:10.3969/j.issn.2095-0411.2022.02.002]

备注/Memo

备注/Memo:
收稿日期:2015-05-09。基金项目:江苏省自然科学基金(BK20150260); 常州大学科研启动基金资助项目(ZMF15020070)。作者简介:吴王平(1985—),男,安徽安庆人,博士,讲师,主要从事贵金属及其合金涂层材料研究。
更新日期/Last Update: 2015-10-20